Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The traditional shear type damper is optimized, and a low-cost double-sided slotted steel tube shear damper with steel tube is proposed. The elastic-plastic deformation in the plane of the slotted steel plate on the side of the steel tube is used to absorb the seismic energy to achieve the purpose of vibration reduction. Taking the height, width, joint width and wall thickness of the bending element as the design parameters, four groups of nine double-sided slotted steel tube shear dampers are designed and quasi-static tests are carried out to study the effects of different design parameters on their working performance, energy dissipation capacity and failure characteristics. The test results show that the damper has strong plastic deformation capacity, good seismic performance and energy dissipation capacity. The hysteretic curve is symmetrical and full, which is similar with shuttle shape. The yield displacement is small, but the deformation capacity is strong. Properly increasing the width of bending element and the wall thickness of steel tube is helpful to energy dissipation. The finite element model of the damper is established, and the simulation results are in good agreement with the test results, which verifies the correctness of the finite element model and can provide some reference for related engineering applications.
EN
In this study, the axial compressive performance of recycled concrete-filled corroded steel tubular columns was assessed with different concrete strength grades (C30, C45, C60) and different corrosion degrees (0%, 5%, 10%, 15%, 20%). Axial compression tests on 15 specimens were conducted, and the corresponding load-displacement curves, skeleton curves, stiffness degradation curves, characteristic load, characteristic displacement, failure modes, and the stress-strain distribution in steel tube and concrete specimens were obtained and thoroughly analyzed. The load-bearing capacity of the specimens was calculated by the typical local and international standards. The static calculation model of the specimens was built by the finite element software, and the load-bearing capacity and deformation performance were evaluated and compared with the test results. The results showed that with the increase of corrosion degree under the same load, the specimen deformation and central bulge are more prominent, whereas the load-bearing capacity and stiffness decrease. As the concrete strength increased, the load-bearing capacity of specimens increased significantly. The calculated load-bearing capacity values and the finite element analysis results agree well with the test values. The findings of this research can be used in different engineering applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.