Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 42

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
PL
Geneza powstania rozważanej tematyki badawczej wywodzi się z potrzeby implementacji robotów w miejscach, gdzie występuje brak możliwości określenia powtarzalnej ścieżki narzędzia, co skutkuje koniecznością stosowanie ręcznej obróbki. Fakt ten wprowadza duże ryzyko powstania elementów brakowych związanych z występowaniem czynnika ludzkiego (błąd, zmęczenie, stres). Zastosowanie pakietu Force Control w zbudowanym stanowisku pozwala na kontrolę siły wywieranej przez narzędzie na obrabiany przedmiot, dzięki czemu pozycja obrabianego detalu musi być znana z dokładnością do kilku milimetrów. Proponowany sposób sterowania pozwala na dostosowanie ruchów robota do informacji zwrotnych z czujników siły w czasie rzeczywistym. Wykorzystanie dodatku ForceControl wymaga określenia szeregu parametrów. W pracy przebadano wpływ zmiany wybranych parametrów na proces obróbki skrawaniem. Otrzymane wyniki zestawiono w formie wykresów.
EN
Origins of the research topics under consideration stems from the need to implement robots in places where there is no possibility to determine repeatable tool paths, resulting in the need to use manual machining. This fact introduces a high risk of defective elements associated with the presence of the human factor (error, fatigue, stress). Application of Force Control Package in enclosed station allows to control the force exerted by the tool on the workpiece. Therefore, the position of the workpiece must be known to an accuracy of a few millimeters. Such approach enables the robot interactions with the environment. The proposed method of control allows to adjust the movements of the robot to feedback from the force sensors in real time. Use of Force Control Package requires the determination of several parameters. In this paper the influence of changing selected parameters on the machining process was investigated. The results are summarized in graphs.
EN
The development of robotics allows the implementation of robotic solutions in an increasingly broad field of technology. However, there is a large group of technological processes that are difficult to be carried out by robots. This is related mainly to the repeatability of the trajectory performed by the robot. An example of such process is machining. This paper proposes a solution for diagnosing the condition of the tools applied in metal alloy robotic machining. Determination of the condition of a cutting tool requires specific methods that depend on the damage type or the wear level. Tool damage such as wear and chipping, were detected by 3D scanning and scanned image analysis. The proposed method was performed automatically and it does not require human intervention. This paper presents examples of solutions for determining the condition of a chamfering tool which is a common machining tool.
PL
Rozwój robotyki pozwala na implementacje rozwiązań zrobotyzowanych w coraz szerszym obszarze techniki. Jednak istnieje spora grupa procesów technologicznych, które są trudne do wykonywania przez roboty. Związane jest to z głównie z powtarzalnością trajektorii wykonywanej przez robota. Przykładem takiego procesu jest obróbka skrawaniem. Z racji niewystarczającej sztywności robotów w porównaniu do obrabiarek CNC, roboty mogą wykonywać obróbkę nie wymagającej dużej dokładności, jak szlifowanie czy gratowanie. Jednym z problemów zrobotyzowanej obróbki skrawaniem jest kompensacja zużycia narzędzi oraz wykrywanie ich uszkodzeń. Ocenę stopnia zużycia narzędzia można dokonać na podstawie pomiaru kształtu geometrycznego. W pracy zaproponowano metodę pomiaru stanu narzędzi frezarskich z wykorzystaniem skanera 3D.
3
Content available remote Deformacja powierzchni blachy górnej połączeń typu clinching
PL
Przedstawiono wyniki pomiarów kształtu zarysu blachy górnej przetłoczenia połączeń typu clinching. Do uformowania złączy zastosowano stempel o stałej średnicy oraz matryce: jednolitą, dwusegmentową, trzysegmentową i czterosegmentową.
EN
The paper presents the results of the experimental studies of the clinching joints upper sheets shape deformation. In the joint forming process a one punch and different die were used. The numbers of movable segments were: two, three andfour.
PL
W ostatnich latach silnie poszerza się spektrum wykorzystania robotów w ślusarskich w procesach obróbczych. Zastosowanie robotów wymaga powtarzalności geometrii i zdefiniowania pozycji i orientacji obrabianych detali. Jeżeli nie ma możliwości zapewniania wystarczającej powtarzalności lub programowanie skomplikowanych trajektorii przeprowadzane jest metodą offline, koniecznie jest zastosowanie układów korekcji ścieżki, takich jak np. system wizyjny. W pracy przedstawiono stanowisko składające się z systemu wizyjnego, pozycjonera oraz robota przemysłowego. Wygenerowana trajektoria robota w układzie odniesienia obiektu może być przemieszczana zgodnie z wektorem translacji i rotacji otrzymywanym na podstawie pomiaru dokonywanego z zastosowaniem systemu wizyjnego. Działanie zaproponowanego rozwiązania zostało zweryfikowane na obiekcie rzeczywistym.
EN
In recent years there has been an increase of the use of robots for locksmith technological processes. It requires repeatability of the geometry and proper settings of a workpiece. If it is not possible to provide sufficient repeatability or programming of complicated trajectories is performed offline, it is essential to use path correction systems, such as the vision system. In the article a station with a vision system, positioner and industrial robot was presented. The generated trajectory of the robot in the object reference system can be moved according to the translation and rotation vector obtained from the measurement of the vision system. Received solution has been verified on a real object.
PL
W pracy przedstawiono koncepcję zastosowania optycznego skanera 3D do wyznaczania TCP manipulatora przemysłowego. Manipulator podczas obróbki może używać różnego rodzaju narzędzi (np. wrzecion elektrycznych, pneumatycznych), dla których niezbędne jest wyznaczenie TCP. Wrzeciona w trakcie obróbki danej powierzchni bądź krawędzi mogą być zmieniane. Każda zmiana wrzeciona związana jest z pewną niedokładnością. Kolejne niedokładności generowane są przez wymianę narzędzi obróbczych (frezy, tarcze ścierne). Niedokładności te powodują zmianę punktu centralnego narzędzia (ang. Tool Cetre Point w skr. TCP) manipulatora, którą należy korygować.
EN
The paper presents the concept of using an optical 3D scanner to determine a TCP of industrial robot. While performing the machining the robot can use various types of tools (eg electric or pneumatic spindles) and various machining tools for which determination of TCP is necessary. Also, spindles can be changed during the machining of a surface or an edge. Each change of spindle is associated with some inaccuracy from the changer system. Further inaccuracies are generated by the machining tools (cutters, grinding wheels). These inaccuracies cause a change of robot’s TCP that should be corrected.
EN
The robotic test stations of the considered design, operated at industrial plants, must first perform the processes and tasks they have been intended for as required by manufacturing cost reduction. It is important that these processes are completed at minimum power consumption. The paper presents the process of system parameter selection for minimised power consumption with the example of an actual robotic test stand built for manufacturing quality control of stators. The developed solutions were tested on a real-life object and deployed on the measurement test stand.
PL
W artykule przedstawiono identyfikację modelu matematycznego mobilnego robota gąsienicowego z wykorzystaniem sieci neuronowych. Podczas modelowania manipulatorów czy robotów trudno jest uwzględnić wszystkie zjawiska, dlatego model matematyczny nie jest dokładnie znany i poprawna analiza dynamiki układów złożonych, wymaga identyfikacji dynamicznych równań ruchu. Identyfikacja modelu matematycznego, z zastosowaniem sieci neuronowych, umożliwia uzyskanie informacji o nieznanych parametrach, przydatnych podczas sterowania czy konstruowania. Rozwiązanie problemu przeprowadzono na drodze numerycznej.
EN
The paper focuses on the identification of the mathematical model of an tracked robot by making use neural networks. It is hard to take all phenomena into consideration when modelling manipulators or robots, therefore the corresponding mathematical models are not known exactly. Correct analysis of dynamics of such complex systems requires identification of dynamical equations of motion. The identification of mathematical models with the use of neural networks and fuzzy logic systems enables one to recognize unknown parameters and adjust the mathematical model to the real object. The solution to the problem was carried out through simulations.
EN
The issues addressed in the paper present a part of the scientific research conducted within the framework of the automation of the aircraft engine part manufacturing processes. The results of the research presented in the article provided information in which tolerances while using a robotic control station with the option of force control we can make edge deburring.
PL
W artykule opisano projekt gąsienicowego robota inspekcyjnego do rurociągów z systemem wymiany gąsienic. Opisany robot przeznaczony jest do pracy w rurociągach o przekroju prostokątnym i kołowym o średnicy ponad 200 mm. W artykule przedstawiono modułowy proces projektowania, mający na celu utworzenie modelu trójwymiarowego w środowisku CAD/CAE. Sporządzono dokumentację rysunkową oraz przygotowano modele CAD i określono technologie obróbki wszystkich elementów, co pozwoliło na zastosowanie CAM do obróbki za pomocą obrabiarek sterowanych numerycznie, jak również metod szybkiego wytwarzania FDM. Wykonano konstrukcję prototypowego robota zgodnie z założeniami projektowymi i przygotowaną dokumentacją. Przeprowadzone testy potwierdzają poprawność projektu. Prototyp robota spełnia wymogi przedstawione w dokumentacji, a wysoka jakość wykonania elementów konstrukcji pozwoli na długotrwałe testy i eksploatację w środowisku pracy.
EN
In this paper, the design of a tracked in-pipe inspection mobile robot with a drive exchange system is presented. The robot would be able to operate in circular and rectangular pipes and ducts, oriented horizontally and vertically with cross section greater than 250 mm. The paper presents a complete design process of a virtual prototype, with usage of CAD/CAE software. Done documentation prepared drawing and CAD models and specified processing technologies of all elements, which allowed the use of CAM to machining using numerically controlled machine tools, as well as methods for the rapid prototyping of FDM. Taken design of a prototype robot in line with the project and prepared the documentation. Performed tests proved conformity of the design with stated requirements. The prototype robot meets the requirements set out in the documentation, and high quality design elements allow for long-term testing and exploitation in the workplace.
10
Content available remote Mechatroniczne prototypowanie podzespołów robota
PL
Produkowane obecnie maszyny i urządzenia mają charakter mechatroniczny. Jest to związane z rozwojem układów, które zastępują stosowane wcześniej moduły mechaniczne. Z tego względu nowoczesne podejście do procesu projektowania i wytwarzania urządzeń musi z definicji zakładać konstrukcję układu mechatronicznego oraz związany z tym wytwórczy proces technologiczny.
EN
Currently manufactured machinery and equipment are mechatronic. It is related to the development of control systems that replace previously used mechanical modules. For this reason, modern approach to the design and production of mechatronic devices must, by definition, mechatronic systemdesign post.
EN
This paper presents a design of a tracked in-pipe inspection mobile robot with an adaptive drive positioning system. The robot is intended to operate in circular and rectangular pipes and ducts, oriented horizontally and vertically. The paper covers a design process of a virtual prototype, focusing on track adaptation to work environment. A mathematical description of a kinematic model of the robot is presented. Operation of the prototype in pipes with a cross-section greater than 210 mm is described. Laboratory tests that validate the design and enable determination of energy consumption of the robot are presented.
PL
Praca przedstawia projekt mobilnego gąsienicowego robota inspekcyjnego ze zmienną konfiguracją układu napędowego. Robot jest stworzony do inspekcji okrągłych oraz kwadratowych rur i kanałów o orientacji pionowej oraz poziomej. W artykule opisany został proces wirtualnego prototypowania, podczas którego zwrócono uwagę na przystosowanie pozycji gąsienic do środowiska, w którym pracować będzie robot. Przedstawiono model matematyczny kinematyki robota oraz symulacje ruchu układu napędowego. Wynikiem prac była produkcja prototypu, który został przetestowany w rurach o średnicy przekraczającej 210 mm, co udokumentowano w artykule. Przeprowadzone zostały również testy zużycia energii przez robota podczas przejazdów w trzech podstawowych konfiguracjach.
EN
This paper presents a design of a tracked in-pipe inspection mobile robot with a reconfigurable drive positioning system. The robot is intended to operate in circular and rectangular pipes and ducts, oriented horizontally and vertically. The paper covers a design process of a virtual prototype, focusing on a track adaptation to work environment. A mathematical description of kinematic model of the robot is presented. Operation in pipes with a cross section greater than 210 mm is shown. Laboratory tests validating the design are performed on a prototype.
PL
Praca ta przedstawia projekt mobilnego gąsienicowego robota inspekcyjnego ze zmienną geometrią. Robot jest stworzony do inspekcji okrągłych oraz kwadratowych rur i kanałów, o orientacji pionowej oraz poziomej. W artykule opisany został proces wirtualnego prototypowania, skupiający się na przystosowaniu gąsienic do środowiska, w którym operować będzie robot. Przedstawiono także matematyczny model opisujący kinematykę robota oraz wyniki testów prototypu robota w rurach o średnicy powyżej 210 mm.
PL
Tematem artykułu jest zrobotyzowane stanowisko służące do zatępiania krawędzi elementów o zmiennym kształcie, z wykorzystaniem systemu automatycznej adaptacji trajektorii narzędzia. Zmienna geometria obrabianego detalu wynika z dokładności wykonania form odlewniczych i zjawiska skurczu. Fakt ten skutkuje koniecznością stosowania ręcznej obróbki, brak możliwości powtarzalnego określenia ścieżki narzędzia. W proponowanym rozwiązaniu wykorzystany zostanie robot z pozycjonerem wyposażony w aktywne narzędzia oraz układ sterowanie siłą interakcji przedmiot-narzędzie. Proponowane rozwiązanie dotyczy analizy układów z kontrolą siły docisku. Propozycja przetestowania aplikacji kontroli siły, która ułatwia interakcje robota z otoczeniem. Bazuje na strategii sterowania, gdzie ruchy robota są dostosowywane do informacji zwrotnych z czujników siły.
EN
The article presents the conception problem solution of robots machining mechanical parts whose shape is randomly changed. Inaccurate shape is the result of cast technology. The author’s propos robot station equipment positioner, force control, active tool. Option Force Control makes the robot possess the capability of quickly and accurately adapting machining to the surface contour and consistency of the materials and component parts to be processed. The proposed solution has been simulated in a virtual environment RobotStudio. Additionally in this approach I proposed the communication system between elements stations and built user library.
PL
Robotyzacja procesów obróbki w przemyśle realizowana jest od wielu lat. Wynika to z poprawy jakości i redukcji kosztów. W artykule przedstawiono koncepcyjne rozwiązanie problemu opracowania procesu zrobotyzowanego zatępiania krawędzi elementów o zmiennym kształcie. Zmienna geometria detalu wynika z dokładności wykonania form odlewniczych i zjawiska skurczu. W proponowanym rozwiązaniu wykorzystany został robot z pozycjonerem wyposażony w aktywne narzędzia, laserowe systemy akwizycji danych oraz układ sterowanie siłą interakcji przedmiot-narzędzie. Zrobotyzowane stanowisko weryfikacji procesu obróbki zostanie przeprowadzona przy wykorzystaniu drugiego robota i skanera 3D. Wynikiem pomiaru jest kompletny cyfrowy model skanowanego 3D detalu, który może być edytowany i przetwarzany rzez programy wspomagające proces prototypowania lub wizualizacji.
EN
The robotisation of technical machining processes is realized in industry for many years. This is because of improving quality and cutting costs. At present there is a group of technological processes whose realisation is a great challenge. The article presents the conception problem solution of robots machining mechanical parts whose shape is randomly changed. Inaccurate shape is the result of cast technology. The author’s propos robot station equipment positioner, force control, active tool. Additionally in this this approach I proposed the communication system between elements stations and built user library. Robotic machining process of verification will be carried out using a second robot and 3D scanner. The result of the measurement is complete 3D digital model of the scanned detail, which can be edited and processed by programs supporting the process of prototyping and visualization.
PL
W pracy zaprezentowano sposób wyznaczania parametrów ruchu gąsienicy w oprogramowaniu MES – ABAQUS 6.11 oraz współczynników niezbędnych do opisu dynamiki w oprogramowaniu SolidWorks Flow Simulation. Wy-znaczono parametry ruchu charakterystycznych punktów gąsienicy. Otrzymane wyniki porównano z założonym modelem matematycznym i wykorzystano do opisu kinetyki gąsienicowego robota inspekcyjnego. Zastosowanie oprogramowania CFD pozwoliło na wyznaczanie współczynnika oporu hydrodynamicznego, dokładnej powierzchni czołowej robota oraz objętości.
EN
In this article the problem of determining the coefficients, required to describe the kinetic underwater robots with crawler drive, was described. In this paper analysis of the movement of the caterpillar in the software MES – ABAQUS 6.11 and the movement of underwater robot in SolidWorks Flow Simulation, was presented. Parameters of the movement of the characteristic points of the caterpillar were obtained in simulation. The CAD soft-ware with CFD modules was used to determine the necessary parameters.
PL
W artykule przedstawiono zagadnienia związane z modelowaniem kinematyki i dynamiki robota mobilnego z napędem gąsienicowym. Do opisu dynamiki robota wykorzystano równania Lagrange’a. W celu wyeliminowania mnożników Lagrange’a z równań ruchu, posłużono się formalizmem Maggiego. Przeprowadzając analizę dynamiki oraz symulacje ruchu, uwzględniono takie czynniki jak: poślizg gąsienic zależny od podłoża i odkształceń szponów, siłę wyporu robota znajdującego się w cieczy, siłę oporu hydrodynamicznego zależną od środowiska, w którym pracuje robot oraz siłę oporu toczenia gąsienicy. Otrzymane wyniki zaprezentowane zostały w postaci równań ma-tematycznych oraz wyników symulacji obrazujących parametry dynamiczne ruchu robota.
EN
In this article authors present the problems connected with modeling the kinematics and dynamics of a mobile robot with a crawler drive. The description of the robot’s dynamic is based on the energetic method based on La-grange equations. In order to avoid modeling problems connected with decoupling Lagrange multipliers Maggi equations are used. During the analysis and motion simulation there are taken into account such parameters as: slipping track-dependent deformation of the substrate and claws, buoyant force of the robot located in the liquid, the hydrodynamic resistance force depending on the environment in which the robot works and the strength of the rolling resistance of track. Simulations of the dynamics parameters have been made and the results are shown.
EN
The paper focuses on the comparison of identification of the mathematical model of an underwater robot by making use of fuzzy logic systems and neural networks. The solution to the problem was carried out through simulations.
EN
This paper presents a design of a tracked in-pipe inspection mobile robot with a flexible drive positioning system. The robot is intended to operate in circular and rectangular pipes and ducts oriented horizontally and vertically. The paper covers the complete design process of a virtual prototype, focusing on track adaptation to the working environment. A mathematical description of kinematics and dynamics of the robot is presented. Operation in pipes with a cross section over 210mm is discussed. Laboratory tests of the utilized tracks are included, confirming conducted FEA simulations.
19
Content available remote Dynamika gąsienicowego robota inspekcyjnego
PL
W artykule opisano sposób modelowania dynamiki gąsienicowego robota inspekcyjnego. Robot został zbudowany w ramach projektu finansowanego przez Narodowe Centrum Nauki i jest przeznaczony do inspekcji rur, kanałów wentylacyjnych ,,suchych" jak i zalanych wodą. Robot zbudowany jest modułowo, ma dwie niezależne, wodoszczelne gąsienice. Moduł główny robota stanowi korpus zbudowany ze stopu aluminium. W korpusie znajduje się elektronika sterująca, kamera oraz systemy łączności. Dynamika robota została opisana przy pomocy równań Lagrange’a II rodzaju dla układu nieholonomicznego. W celu wyeliminowania mnożników Lagrange'a z równań ruchu posłużono się formalizmem Maggiego. Przeprowadzając analizę dynamiki wzięto pod uwagę takie czynniki jak: poślizg gąsienicy zależny od odkształceń szponów oraz podłoża, siłę oporu hydrodynamicznego, siłę wyporu oraz siłę oporu hydrodynamicznego. Prototyp robota przeszedł pozytywne testy w Miejskim Przedsiębiorstwie Wodociągów i Kanalizacji w Krakowie.
EN
In this article authors present the problem connected with the dynamics modeling mobile robot with crawler drive. This robot has been designed to enable monitoring and analysis of the technical state of pipes and water tanks. On the crawler module track drive different types of variables interact over time. Description of crawler motion in real conditions, with the uneven ground with variable parameters, it is very complicated and therefore it is necessary to use simplified models. The description of the robot's dynamic based on the energetic method based on Lagrange equation. In order to avoid modeling problems connected with decoupling Lagrange multipliers Maggi equation are used.
20
Content available Dynamics of underwater inspection robot
PL
W artykule przedstawiono zagadnienia związane z modelowaniem dynamiki robota mobilnego z napędem gąsienicowym. Do opisu dynamiki robota wykorzystano równania Lagrange’a. W celu wyeliminowania mnożników Lagrange’a z równań ruchu, posłużono się formalizmem Maggiego. Przeprowadzając analizę dynamiki oraz symulacje ruchu, uwzględniono takie czynniki jak: poślizg gąsienic zależny od podłoża i odkształceń szponów, siłę wyporu robota znajdującego się w cieczy, siłę oporu hydrodynamicznego zależną od środowiska, w którym pracuje robot oraz siłę oporu toczenia gąsienicy. Otrzymane wyniki zaprezentowane zostały w postaci równań matematycznych oraz wyników symulacji obrazujących parametry dynamiczne ruchu robota.
EN
In this article authors present the problems connected with the dynamics modeling mobile robot with crawler drive. The description of the robot’s dynamic is based on the energetic method based on Lagrange equations. In order to avoid modeling problems connected with decoupling Lagrange multipliers Maggi equations are used. During the analysis and motion simulation takes into account such parameters as: slipping track-dependent deformation of the substrate and claws, strength, buoyancy robot located in the liquid, the hydrodynamic resistance force depending on the environment in which the robot works and the strength of the rolling resistance of track. Simulations of the dynamics parameters have been made and the results are shown.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.