Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Pesticide usage reaches several million metric tons annually worldwide, and the effects of pesticides on non-target species, such as various fishes in aquatic environments, have resulted in serious concerns. Predicting pesticide aquatic toxicity to fish is of great significance. In this paper, 20 molecular descriptors were successfully used to develop a regression quantitative structure-activity/toxicity relationship (QSAR/QSTR) model for the toxicity logLC50 of a large data set consisting of 1106 pesticides on fishes by using a general regression neural network (GRNN) algorithm. The optimal GRNN model produced correlation coefficients R of 0.8901 (rms = 0.6910) for the training set, 0.8531 (rms = 0.7486) for the validation set, and 0.8802 (rms = 0.6903) for the test set, which are satisfactory compared with other models in the literature, although a large data set of toxicity logLC50 was used in this work.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.