This paper presents a comprehensive review of hydrogen internal combustion engines (H2ICEs) in the context of heavy transport vehicles, highlighting their potential as a sustainable alternative to traditional diesel engines. The study synthesizes current research, evaluating the environmental impact, technological developments, challenges, and economic viability of H2ICEs. Key findings demonstrate that hydrogen, as a clean energy carrier, significantly reduces greenhouse gas emissions and air pollutants. The adaptability of H2ICEs to existing diesel engine infrastructure offers a practical pathway for rapid implementation. However, challenges such as efficient hydrogen storage, distribution logistics, and infrastructure development remain substantial barriers. The paper also discusses the compliance of H2ICEs with emission regulations, emphasizing the reduction in nitrogen oxide emissions. The economic assessment underscores the need for cost-effective hydrogen production methods, particularly focusing on steam reforming for large-scale applications. The study concludes with recommendations for future research directions and policy implications, advocating for a balanced approach that combines technological innovation with environmental and economic considerations to facilitate the transition to a more sustainable heavy transport sector.
PL
W artykule przedstawiono obszerny przegląd rozwiązań zasilania silników spalinowych wodorem (HZICES), W szczególności W kontekście pojazdów ciężarowych, podkreślając ich potencjał jako zrównoważonej alternatywy dla tradycyjnych silników Diesla. W pracy skupiono się na ocenie wpływu na środowisko, rozwoju technologicznym i związanym z tym wyzwaniom oraz opłacalności ekonomicznej HZICEs. Wodór wykorzystywany jako paliwo silnikowe znacznie zredukuje emisję gazów cieplarnianych i zanieczyszczeń powietrza towarzyszących spalaniu oleju napędowego. Możliwość dostosowania istniejących silników Diesla do współspalania wodoru oferuje praktyczną ścieżkę do szybkiego i taniego wdrożenia, niemniej wyzwania takie jak efektywne przechowywanie wodoru, logistyka dystrybucji i rozwój infrastruktury nadal pozostają znaczącymi barierami w rozwoju. Zwrócono uwagę na potrzebę rozwoju nisko kosztowych metod wytwarzania wodoru i kierunki dalszych badań, łącząc innowacje technologiczne z aspektami środowiskowymi i ekonomicznymi w celu ułatwienia przejścia do bardziej zrównoważonego sektora transportu ciężkiego
Accelerating the process of the transport and energy sectors increases the interest in fuels derived from renewable sources. The predicted three-fold increase in hydrogen production by 2050, driven by its falling production costs, justifies the direction of research aimed at its popularisation as a fuel for internal combustion engines (H2ICE). The presented article provides an overview of the state of knowledge on hydrogen combustion systems, which are currently the most attractive development path, mainly due to the well-developed production technology and relatively low recycling cost compared with fuel cells. The paper contains a comprehensive analysis of currently available solutions covering issues related to the production, storage, and transmission of hydrogen, with particular emphasis on the Polish market, which is one of the largest in Europe in terms of its production. The authors also propose their own concept of a hydrogen combustion system for application in an internal combustion engine. The presented solution is based on the idea of prechamber introduction in order to improve combustion process parameters and hence overall engine efficiency.
The development of internal combustion engines is focused at solving problems like: fulfilment with increasingly stringent requirements regarding exhaust emissions and elimination of threats to the natural environment. The subject of this thesis is to assess the impact of supplying a compression-ignition engine with hydrocarbon mixtures and to examine the impact of water on external parameters of the engine, such as smoke opacity. The main tests were carried out on a 4-cylinder VW 1.9 TDI internal combustion engine at a constant engine crankshaft speed of 3000 rpm and a variable load of 0, 30, 60, 90, 120, 150 and 180 Nm. The tests were carried out using an innovative mixture of hydrated fusel oils, ethyl alcohol and ionic and/or non-ionic emulsifiers, from which was made of microemulsions with a water content in diesel oil of 5, 10, 15, 20 and 25%. The tests carried out showed a beneficial effect of the water content in the diesel oil on the reduction of the average value of smoke opacity, which systematically decreases with the increase in the percentage of water in the diesel oil.
In order to ensure better control of the combustion process in a internal combustion engine powered by hydrogen, it has been proposed to use a split combustion chamber solution. Following paper contains a description of a hydrogen combustion system that includes an analysis of possible technical solutions. The considerations take into account the issues of the dual nature of hydrogen knocking and the problem of burning a stratified charge of a hydrogen-air mixture in a cylinder.
The following article presents the method of verification of EURO III standard in real conditions for special vehicles. The test object qualified as a special vehicle was tested in road conditions along a defined route, and then the obtained measurement results were compared to the exhaust emission standard (EURO III) applicable for this vehicle. A method of comparing the emission factors in road conditions with the indicators obtained on the engine dynamometer was proposed. An AVL mobile exhaust gas analyzers PEMS dedicated for RDE road tests were used in the research.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.