The effect of replacing iron with transition metals (M = Mn, Cr, Co) on the microstructure of mechanically alloyed Al65 Cu20 Fe15 quasicrystalline powder was examined by X-ray diffraction and transmission electron microscopy methods. Powders of various compositions were milled in a high-energy planetary ball mill up to 30 hours at a rotation speed 350 rpm using WC milling media. The amount of the fourth additions was constant in all powders and Fe atoms were replaced with Mn, Cr or Co in a 1:1 ratio, while the content of the Al and Cu was selected in two ways: they remained the same as in the initial ternary Al65 Cu20 Fe15 alloy or changed to obtain e/a ratio = 1.75 (optimal for icosahedral quasicrystalline phase). Quasicrystalline phase formed in the quaternary Al65 Cu20 Fe7.5 M7.5 powders, whereas in the second group of compositions only crystalline phases were identified.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The effect of heat treatment at 903 K on microstructure and intermetallic compound growth in explosively welded A1050/Ti gr. 2/A1050 clad was presented in the paper. Growth kinetics of TiAl3 intermetallic layers formed at upper and lower interfaces of three-layered A1050/Ti gr. 2/A1050 was investigated. A new approach to definition of growth kinetics of TiAl3 intermetallic phase was discussed. It was established that the growth was solely governed by grain boundary diffusion at the upper interface. Change of the mechanism from grain boundary diffusion to volume diffusion was observed at the lower interface.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.