An alternative fabrication method for metallic fuel in Gen-IV reactor was introduced with vibration packing of nuclear fuel particles to facilitate remote fabrication in a hot cell and reduce the generation of long-lived radioactive wastes. Vibration packing experiments on metallic particulate fuel using a surrogate 316L stainless steel powder were done to investigate the packing density and the uniformity of the simulated fuel according to the filling method and the vibration condition. Metallic particulate fuel filled with a pre-mixed power over all particles had the highest packing fraction and the most uniform distribution among the filling methods. The vibration packing method showed that it could fabricate the metallic particulate fuel having uniform distribution of spherical fuel particles through the adjustment of the filling method of the metallic powder and the vibration condition of the metallic particulate fuel.
U-10wt.%Zr-5wt.%RE fuel slugs for a sodium-cooled fast reactor (SFR) were conventionally prepared by a modified injection casting method, which had the drawback of a low fabrication yield rate of approximately 60% because of the formation of many metallic fuel scraps, such as melt residue and unsuitable fuel slug butts. Moreover, the metallic fuel scraps were classified as a radioactive waste and stored in temporary storage without recycling. It is necessary to develop a recycling process technology for scrap wastes in order to reduce the radioactive wastes of the fuel scraps and improve the fabrication yield of the fuel slugs. In this study, the additive recycling process of the metallic fuel scraps was introduced to re-fabricate the U-10wt.%Zr-5wt.%RE fuel slugs. The U-10wt.%Zr-5wt.%RE fuel scraps were cleaned on the surface impurity layers with a mechanical treatment that used an electric brush under an Ar atmosphere. The U-10wt.%Zr-5wt.%RE fuel slugs were soundly re-fabricated and examined to evaluate the feasibility of the additive process compared with the metallic fuel slugs that used pure metals.
U-10wt.%Zr metallic fuel slugs containing rare-earth (RE: a rare-earth alloy comprising 53% Nd, 25% Ce, 16% Pr and 6% La) elements for a sodium-cooled fast reactor were fabricated by modified injection casting as an alternative method. The distribution, size and composition of the RE inclusions in the metallic fuel slugs were investigated according to the content of the RE inclusions. There were no observed casting defects, such as shrunk pipes, micro-shrinkage or hot tears formed during solidification, in the metallic fuel slugs fabricated by modified injection casting. Scanning electron micrographs and energy-dispersive X-ray spectroscopy (SEM-EDS) showed that the Zr and RE inclusions were uniformly distributed in the matrix and the composition of the RE inclusions was similar to that of a charged RE element. The content and the size of the RE inclusions increased slightly according to the charge content of the RE elements. RE inclusions in U-Zr alloys will have a positive effect on fuel performance due to their micro-size and high degree of distribution.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.