Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Due to a lack of organs, cardiac support systems are being implanted in patients with severe congestive heart failure. One of the solutions to overcome complications such as infow obstruction or pump thrombosis, which may occur in the case of ventricular assist devices, is to modify the surface of cannulas for the controlled blood clotting process. The results obtained up till now for developed surface coatings clearly show the influence of topographical and mechanical parameters of the coatings on cell viability and protein adsorption mechanism. The new coatings should enable the controlled growth of scar tissue, resulting in the limitation of thromboembolic events, and the reduction of cystic tissue growth into the fow lumen. The aim of this study is to evaluate the correlation between surface topography parameters on the susceptibility of cells to grow and adhere to the substrate as a solution with potential for use in MCS (mechanical circulatory support) devices. Research on surfaces used in MCS devices and on inflow cannulas has been carried out for many years, while the novelty of the present solution makes it a milestone within that type of application simultaneously allowing for appropriate selection of process parameters. Surface modifcation of titanium alloy Ti6Al7Nb was carried out using vacuum powder sintering of CP-Ti (commercially pure titanium) powder with two morphologies (regular spheres and irregular grains). The characterization of coatings obtained with the proposed method and the influence of measured topographic parameters (applying scanning electron microscopy, contact angle measurement and contact proflometry) on the cytotoxicity and susceptibility to protein adsorption were presented. Advanced albumin adsorption studies have fully confrmed the dependence of surface complexity on protein adsorption. The obtained results show a high potential of the produced coatings toward enabling permanent integration at the implant with the soft tissue.
2
EN
A promising strategy for fighting the bacterial biofilm on the surface of biomaterials involves modification of their surface with the use of bactericidal and bacteriostatic coatings. Ongoing studies concentrate on the development of material that can limit bacterial colonisation and is safe for the human organism. Therefore, the current research focuses on the conditions related to implant coating to limit biofilm formation. However, previous outcomes in this area have not been satisfactory. Accordingly, the main goal of the carried out tests was to study the impact of the physicochemical properties of the surface layers on the course of processes taking place on the surface of implants made of metallic biomaterials used in the bone system. The surface of the analysed biomaterial -316LVM steel - was modified using such processes as grinding, electrochemical polishing, sandblasting, application of a ZnO layer using low-temperature Atomic Layer Deposition (ALD), and medical sterilisation. Initial assessments involved the chemical composition, phase composition, and the microstructure of the surface layer. The last stage involved microbiological studies, including an assessment of the adhesion of Gram-positive and Gram-negative bacteria to the modified surface, proliferation of MG-63 osteoblast-like cells and cytotoxicity tests. The analysis of adhesion of S. aureus and E. coli colonies confirmed that the ZnO coating is effective in reducing bacterial adhesion to the 316LVM steel substrate, regardless of the number of cycles, process temperature and surface treatment method.
EN
The paper presents the analysis of effect of the Zr to Zr2N layer thickness ratios of 1:1, 1:2, and 1:4 on the mechanical properties of Zr /Zr2N multilayer coatings. With the increase in the amount of the ceramic phase in the multilayer coating, an increase in hardness from 11 to 14.5 GPa and Young's modulus from 158 to 211 GPa was observed. This was accompanied by improved scratch resistance as critical load LC2 raises from 17 to over 30 N. A ratio increase from 1:1 to 1:2 caused a 3-fold improvement in the coating wear resistance, which was also accompanied by a change in the wear mechanism. However, there was no further improvement of this parameter with a ratio increase to 1:4. Microscopic analysis of wear tracks, using the TEM technique revealed that the Zr metal layers change the direction of crack propagation. This phenomenon results in the improved fracture resistance of multilayer coatings compared to single coatings. Such a mechanism was even observed for the 1:4 coating with the thinnest 58 nm Zr layers.
PL
W pracy przedstawiono analizę wpływu stosunku grubości warstw Zr i Zr2N 1:1, 1:2 i 1:4 na właściwości mechaniczne powłok wielowarstwowych Zr/Zr2N. Wraz ze wzrostem udziału fazy ceramicznej w powłoce wielowarstwowej obserwowano wzrost jej twardości z 11 do 14,5 GPa i modułu Younga ze 158 do 211 GPa. Towarzyszyła temu także poprawa odporności na zarysowanie, o czym świadczy wzrost wartości obciążenia krytycznego LC2 z 17 do ponad 30 N. Wzrost stosunku z 1:1 do 1:2 powodował 3-krotną poprawę odporności na zużycie powłoki, czemu towarzyszyła także zmiana mechanizmu zużywania. Natomiast nie następowała dalsza poprawa tej cechy przy wzroście stosunku do 1:4. Analizy mikroskopowe torów tarcia przy użyciu techniki TEM wykazały, że warstwy metali Zr powodują zmianę kierunku propagacji pęknięć, co przekłada się na poprawę odporności na pękanie powłok wielowarstwowych w stosunku do powłok pojedynczych. Mechanizm taki obserwowano nawet dla powłoki 1:4, dla której grubość warstwy Zr była najmniejsza i wynosiła 58 nm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.