This study aims to investigate the interplay between cutting speed and Thermal-Assisted Machining (TAM) concerning surface roughness during the high-speed machining of SKD11 steel. The integration of pre-cutting workpiece heating introduces a temperature factor that intricately affects surface roughness. The primary objective is to ascertain optimal speed and temperature ranges that synergistically enhance machining efficiency, curtail costs, and elevate surface quality. The experimental protocol initiates with room temperature milling of SKD11 steel, progressively elevating the temperature gradient to systematically appraise temperature's impact on surface roughness under both conventional and elevated cutting speeds. Subsequent experimentation, conducted within specific temperature thresholds, entails stepwise augmentation of cutting speed to elucidate the influence of high-speed conditions on surface roughness. The ensuing analysis meticulously examines the ramifications of distinct cutting speed intervals on surface roughness. Ultimately, the study furnishes pragmatic recommendations for judiciously selecting cutting speeds and heating temperature parameters across diverse machining scenarios.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.