Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  relational decomposition
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Układowe realizacje systemów wnioskowania przybliżonego wymagają często znacznych nakładów. Zmniejszenie ich jest możliwe poprzez zastosowanie metody dekompozycji Gupty i przedstawieniu systemu jako struktury hierarchicznej. W celu wyeliminowania jej niekorzystnych własności konieczny jest wstępny podział bazy wiedzy. Zaproponowana została metoda najlepszego wyboru wykorzystująca wybrane algorytmy podziału, zaimplementowana w sprzętowym systemie wnioskowania przybliżonego FPGA-FIS.
EN
The hardware cost of a fuzzy inference system can be reduced using the Gupta's relational decomposition technique [1]. The system can be represented as a hierarchical architecture that comprises a set of Single Input Single Output subsystems (Fig. 1). The decomposition has some disadvantages, computation of the global relation ℜ is an extremely time-consuming process and a large memory is necessary to store it. They can be eliminated if projection is expanded on linguistic level and decomposition is used for the knowledge base (1), (Fig. 2) [2]. The projection operation (on relational or linguistic level) in some cases can lead to inevitable loss of information because of its approximate nature [3]. To avoid the inference error (the output result is more fuzzy than that obtained in the classical system architecture (3)) methods for partitioning (5) the knowledge base KB[Y , XK,? , X1] into p subbases without inconsistent rules (4) are proposed [4]. In Section 3 the methods based on partitioning towards a defined input linguistic variable (Fig. 3) and elimination of the inconsistent rules (Fig. 4) are described [5, 6]. The algorithms are simple and fast but the results are not optimal in all cases (hardware cost depends on the number of subsystems p, Tab. 1). Thus, the method of the best choice is proposed and implemented in the FPGA fuzzy inference system as a DMU (Decomposition Management Unit) module (Fig. 6).
PL
W artykule przedstawiono metodę dekompozycji relacyjnej Gupty przeniesioną na płaszczyznę lingwistyczną i wykorzystaną w realizacjach regułowych systemów wnioskowania przybliżonego (FITA) strukturze hierarchicznej. Pozwala ona obniżyć nakłady sprzętowe i obliczeniowe. Wynik wnioskowania uzyskiwany z takiego systemu jest bardziej rozmyty, niż uzyskany z systemu o klasycznej strukturze. W artykule omówiona została technika dekompozycji wykorzystująca podział bazy wiedzy systemu wnioskowania przybliżonego. Pozwala ona zmniejszyć lub całkowicie wyeliminować nadmiarową rozmytość wyniku wnioskowania.
EN
The paper presents Gupta's relational decomposition technique expanded on linguistic level. The method can be used to implement First Inference Then Aggregation fuzzy hierarchical inference systems. It allows a decrease in the hardware cost of the fuzzy system or in the computing time of the final result. The inference result of the hierarchical system using decomposition technique is more fuzzy than of the classical system. The paper describes a linguistic decomposition technique based on partitioning the knowledge base of the fuzzy inference system. It allows to decrease or even totally remove a redundant fuzziness of the inference result.
EN
The paper presents Gupta's relational decomposition technique expanded on linguistic level. It allows to reduce the hardware cost of the fuzzy system or the computing time of the final result, especially when referring to First Aggregation Then Inference (FATI) relational systems or First Inference Then Aggregation (FITA) rule systems. The inference result of the hierarchical system using decomposition technique is more fuzzy than of the classical system. The paper describes a linguistic decomposition technique based on partitioning the knowledge base of the fuzzy inference system. It allows to decrease or even totally remove a redundant fuzziness of the inference result.
PL
Metoda dekompozycji relacji rozmytych M. M. Gupty pozwala ograniczyć nakłady sprzętowe niezbędne w realizacji układowej systemów relacyjnych, jednak charakteryzuje się wysokim nakładem obliczeniowym. Tę niekorzystną własność można wyeliminować poprzez rozszerzenie metody podstawowej na płaszczyznę lingwistyczną. Podejście to pozwala wykorzystać uzyskane wyniki w realizacji zarówno systemów regułowych, relacyjnych, jak i mieszanych. W pracy przedstawiono sprzętowy modułu realizujący proces dekompozycji lingwistycznej bazy wiedzy zaimplementowany w systemie wnioskowania przybliżonego FPGA-FIS.
EN
The hardware cost of the FATI relational fuzzy inference system can be reduced using M. M. Gupta's decomposition technique. It is based at projection operation defined for fuzzy relation. A lot of time is required to compute a global relation and a large memory to store it. In the paper has been proposed a modified M. M. Gupta's decomposition method expanded on linguistic level. It allows reducing hardware cost of the implementation of the FITA or FITA/FATI fuzzy inference systems. It can be implemented as a hardware unit in an FPGA structure to decrease an initialization time of the FPGA-FIS system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.