Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  multi-directional forging
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The effect of multi-pass multi-directional forging (MDF) on the microstructure and mechanical properties of Zn–22Al–xSi (X = 4 and 8 wt. %) alloy, also known as SiP/ZA22 composite, was investigated. MDF process was applied at 100 °C for one, three, and five passes with the strain of 0.47 per pass. According to the results, MDF refined and homogenized the composites microstructure so that the average size of primary Si (SiP) particles reduced from 25.0 µm and 30.4 µm in as-cast ZA22-4Si and ZA22-8Si composites to about 6.2 µm and 7.3 µm in five-pass MDFed condition, respectively, and their distribution shifted to the smaller size range. Mechanical properties tests revealed that multi-pass MDF has softened the investigated composite. For instance, the hardness, tensile strength, and shear strength of ZA22-4Si composite reduced from 83 HV, 280 MPa, and 165 MPa in as-cast condition to about 58 HV, 160 MPa, and 118 MPa in the five-pass MDFed sample, respectively. This is while its fracture strain increased from 15% to about 40% with the strain rate of 1.2 × 10–3 s−1.
EN
The combined effect of extrusion and multi-directional forging (MDF) was investigated on microstructure and mechanical properties of aluminum-based composite with 10, 15, and 20 wt% Mg2Si. In the casted Al–Mg2Si composites, the primary and eutectic Mg2Si particles are generally coarse which lead to decreasing their mechanical properties and formability. Extrusion process was utilized to overcome this shortcoming by breakage of the eutectic structure, reduction of Mg2Si size, and the decrease of casting defects. Then, MDF process was applied up to failure on the extruded composites at room temperature. It led to the morphological modification of primary and eutectic Mg2Si phases and the reduction of their size. It was found that the MDF process resulted in a considerable improvement in hardness and shear strength of materials. This may be related to the reduction in the average size of Mg2Si particles with their uniform distribution. In addition, ultimate shear strength is, respectively, increased from 94, 99, and 81 MPa to 119, 116, and 117 MPa for the 10, 15, and 20 wt% Mg2Si aluminum composites after the final pass of MDF. Meanwhile, the normal displacement of composites is reduced at initial passes and increased by the addition of more pass numbers.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.