Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 19

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  materiał katodowy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Synteza materiału katodowego LiMn2O4 dla akumulatorów litowo-jonowych
PL
Spinel LiMn₂O₄ został zsyntetyzowany i wykorzystany do przygotowania materiałów katodowych do baterii litowo-jonowych. Materiały te otrzymano w różnych warunkach syntezy (rodzaj czynników chelatujących, pH, temperatura reakcji, czas reakcji) i badano pod kątem wydajności elektrochemicznej przy użyciu modelu metodologii powierzchni odpowiedzi. Odczyn mieszaniny reakcyjnej odegrał znaczącą rolę w przygotowaniu materiału katody LiMn₂O₄. Zoptymalizowany wskaźnik retencji wyniósł 95,57%.
EN
LiMn₂O₄ spinel was synthesized and used for prepn. cathode materials for Li-ion batteries. The materials were studied for electrochem. performance under varying synthesis conditions (types of chelating agents, pH, reaction temp., reaction time) by using the response surface methodol. model. The pH played a significant role in prepn. of the LiMn₂O₄ cathode material. The optimized retention rate was 95.57%.
PL
W pracy przedstawiono warunki wysokotemperaturowej syntezy materiałów katodowych na bazie Li2MnO3 oraz 0,9Li2MnO3∙0,1LiMn1-yNiyO2 (0,1 ≤ y ≤ 0,9). Wykonano badania XRD, określono strukturę krystaliczną oraz skład fazowy otrzymanych proszków, a także zbadano ich mikrostrukturę za pomocą skaningowego mikroskopu elektronowego (SEM). Określono także zmiany wielkości cząstek wraz ze wzrostem zawartości niklu w badanych materiałach. W celu wykonania pomiarów elektrochemicznych skonstruowano ogniwa o schemacie Li/Li+/Li2MnO3 oraz Li/Li+/0,9Li2MnO3•0,1LiMn1-yNiyO2 (0,1 ≤ y ≤ 0,9), a następnie wykonano testy cyklicznego ładowania i rozładowania ogniwa. Określono pojemności właściwe oraz stabilność materiałów podczas pracy ogniwa pod obciążeniem prądowym C/20, C/10 i C/5 w zakresie napięć od 2,0 V do 4,8 V. Najwyższe pojemności rozładowania odnotowano dla składu 0,9Li2MnO3•0,1LiMn0,1Ni0,9O2. Dla tego materiału zaobserwowano również redukcję nieodwracalnego spadku pojemności podczas pierwszego cyklu ładowania.
EN
The work presents the description of high temperature solid-state reaction synthesis cathode materials based on Li2MnO3 and 0.9Li2MnO3•0.1LiMn1-yNiyO2 (0.1 ≤ y ≤ 0.9). The crystal structure and phase composition of the synthesized materials were examined by the XRD technique. To characterize the microstructure a scanning electron microscope SEM was used. Changes of the particle size with increase of the nickel content in tested materials were also determined. In order to perform electrochemical measurement, the Li/Li+/Li2MnO3 and Li/Li+/0.9Li2MnO3•0.1LiMn1-yNiyO2 cells were prepared, followed by a cyclic charge and discharge test. Specific capacity and stability were examined during the charge and discharge cycles at a current rate of C/20, C/10 and C/5 in a voltage range of 2.0-4.8 V. The highest discharge capacity was found for the composition 0.9Li2MnO3•0.1LiMn0.1Ni0.9O2. For this material, a reduction of the irreversible capacity decrease during the first charging was also observed.
PL
W pracy przedstawiono wybrane wyniki badań elektrochemicznych procesu redukcji tlenu w układach O2│LSM│20GDC, O2│LSCF│20GDC i O2│LSM│8YSZ, O2│LSCF│8YSZ, gdzie 8YSZ - 8% mol. Y2O3 w ZrO2, 20GDC - Ce0,8Gd0,2O1,9, LSM - (La0,80Sr0,20)0,95MnO3-δ, LSCF - (La0,60Sr0,40)0,95Co0,20Fe0,80O3-δ. W badaniach chronoamperometrycznych oraz przeprowadzonych metodą elektrochemicznej spektroskopii impedancyjnej użyto elektrod wykonanych w kształcie piramidy z katod LSM, LSCF. Pomiary wykonano w temperaturze 700 °C w powietrzu. Na podstawie zarejestrowanych zależności prąd(I)-czas(t) podczas katodowej polaryzacji nadnapięciem \DeltaE = -0,5 V dla wszystkich badanych układów stwierdzono wzrost wielkości prądu pod wpływem polaryzacji katodowej. Obserwacje obszaru bezpośredniego kontaktu stożkowej elektrody LSCF lub LSM z powierzchnią elektrolitu 20GDC wskazują na pojawiające się trwałej zmiany struktury powierzchni elektrolitu ceramicznego, powstające wyłącznie podczas pracy układu pod obciążeniem. Jakościowe porównanie widm impedancyjnych układów O2│LSM│20GDC, O2│LSCF│20GDC i O2│LSM│8YSZ, O2│LSCF│8YSZ, otrzymanych dla katod niespolaryzowanych (\DeltaE = 0 V) oraz spolaryzowanych (\DeltaE = -0,5 V) wskazuje na zmniejszanie się oporności omowej Rs oraz polaryzacyjnej Rp w wyniku pracy układu pod obciążeniem. Na podstawie badań elektrochemicznych wykonanych dla układu O2│LSCF│20GDC z użyciem stożkowych czy porowatych katod LSCF w analogicznych warunkach pomiarowych, stwierdzono w obu przypadkach wzrost natężenia prądu w czasie. Otrzymane wyniki wskazują na potencjalne możliwości wykorzystania opracowywanej metodyki badań z ceramicznymi elektrodami punktowymi jako uzupełniającej do klasycznej metody z elektrodami porowatymi. Analiza zjawisk, zachodzących na granicy faz O2│katoda│ceramiczny elektrolit tlenkowy, jest łatwiejsza niż w przypadku elektrod porowatych, ze względu na zredukowany obszar zachodzenia reakcji elektrochemicznej.
EN
The paper presents the results of electrochemical studies on oxygen reduction in the O2│LSM│20GDC, O2│LSCF│20GDC, and O2│LSM│8YSZ, O2│LSCF│8YSZ systems, where 8YSZ- 8 mol% Y2O3 w ZrO2, 20GDC - Ce0.8Gd0.2O1.9, LSM - (La0.80Sr0.20)0.95MnO3-δ, LSCF - (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ. In electromechanical impedance spectroscopy, electrodes made of LSM, LSCF cathodes were used in chronoamperometric and electrochemical impedance spectroscopy. Measurements were made at 700 °C in air. On the basis of the registered current (I)–time (t) dependencies, during the cathode polarisation with \DeltaE = -0.5 V overvoltage, an increase of the cathodic polarisation current was observed for all tested systems. Observations of the area of "the direct contact of the conical LSCF or LSM electrode" with the surface of the 20GDC electrolyte indicate permanent changes in the structure of the electrolyte ceramic surface arising only during the operation of the system under load. A qualitative comparison of impedance spectra O2│LSM│20GDC, O2│LSCF│20GDC, and O2│LSM│8YSZ, O2│LSCF│8YSZ obtained for non-polarised cathodes (\DeltaE = 0 V) and polarized ones (\DeltaE = -0.5 V) indicates a decrease of the Ohmic resistance Rs and polarisation resistance Rp as a result of the operation of the system under load. Based on the electrochemical tests performed for O2│LSCF│20GDC system using conical or porous LSCF cathodes under analogous measurement conditions, an increase in current over time was found in both cases. The results show the potential for using the developed research methodology with ceramic point electrodes as a supplement to the classical porous electrode method. Analysis of phenomena occurring at the O2│cathode│ceramic oxide electrolyte phase boundary is easier than in the case of porous electrodes because of the reduced area of the electrochemical reaction.
PL
W pracy przedstawiono opis wysokotemperaturowej syntezy nowego materiału katodowego dla ogniw Na-ion batteries o strukturze warstwowej P2-Na0,7Fe0,5Mn0,5O2. Zbadano strukturę krystaliczną oraz wyznaczono charakterystykę temperaturową przewodnictwa elektrycznego otrzymanego materiału. Na bazie uzyskanego tlenku przygotowano ogniwa elektrochemiczne o schemacie Na/Na+/NaxFe0,5Mn0,5O2. Dla tak skonstruowanych ogniw wyznaczono pojemność właściwą materiału katodowego, odwracalność pracy ogniwa oraz stabilność podczas cyklicznego ładowania i rozładowania. Najwyższa uzyskana pojemność rozładowania ogniwa Na/Na+/NaxFe0,5Mn0,5O2 wynosiła 200 mAh/g przy szybkości rozładowania C/20. Monotoniczną zmianę potencjału zarejestrowano w zakresie 2-3 V. W oparciu o wyniki badań materiału katodowego Na0,7Fe0,5Mn0,5O2 metodą in-situ XRD w trakcie procesu ładowania i rozładowania ogniwa Na/Na+/Na0,7Fe0,5Mn0,5O2 stwierdzono, że struktura krystaliczna nie ulega zmianom w trakcie procesu elektrochemicznej deinterkalacji/interkalacji sodu z wyjątkiem odwracalnych zmian parametrów sieciowych.
EN
This work presents a high-temperature method of synthesis of a new cathode material for Na-ion batteries with the layered structure P2-Na0.7Fe0.5Mn0.5O2. The crystal structure and temperature dependence of electrical conductivity of the obtained material were investigated. The synthesized powder was applied as cathode material in Na/Na+/NaxFe0.5Mn0.5O2-type cells. Specific capacity of the cathode material, reversibility and stability during charge-discharge cycles measurements were carried out in order to characterize electrochemical properties of the cells. The highest discharge capacity of the Na/Na+/NaxFe0.5Mn0.5O2 cell was about 200 mAh/g with C/20 current rate. The monotonous voltage changes were recorded in the range of 2-3 V. Results obtained by the in-situ XRD technique during the process of charging and discharging of the Na/Na+/Na0.7Fe0.5Mn0.5O2 type cell provide a conclusion that the crystal structure of cathode material does not change during the electrochemical deintercalation/intercalation process of sodium except of reversible changes of structure parameters.
5
PL
W pracy przedstawiono opis wysokotemperaturowej syntezy nowego materiału katodowego dla ogniw Na-ion batteries, otrzymanego przez częściowe podstawienie kobaltu manganem w NaxCoO2. Zbadano strukturę krystaliczną oraz wyznaczono charakterystykę temperaturową przewodnictwa elektrycznego Na0,7Co0,7Mn0,3O2. Na bazie uzyskanego materiału przygotowano ogniwa elektrochemiczne o schemacie Na/Na+/NaxCo0,7Mn0,3O2. Dla tak skonstruowanych ogniw wyznaczono charakterystyki woltamperometryczne, pojemność właściwą materiału katodowego, odwracalność pracy ogniwa oraz stabilność podczas cyklicznego ładowania i rozładowania. Najwyższa uzyskana pojemność rozładowania ogniwa Na/Na+/NaxCo0,7Mn0,3O2 wynosiła 104 mAh•g-1 przy szybkości rozładowania C/35. Monotoniczną zmianę potencjału zarejestrowano w zakresie 2,5-3,4 V. Materiał katodowy Na0,7Co0,7Mn0,3O2 jest stabilny w kontakcie z elektrolitem (1M roztwór NaClO4 w węglanie propylenu) w zakresie temperatury od -30 °C do 150 °C.
EN
This work presents a high-temperature method of synthesis of a new cathode material for Na-ion batteries. The material was obtained by substitution of cobalt with manganese in NaxCoO2. The crystal structure and temperature dependence of electrical conductivity of Na0.7Co0.7Mn0.3O2 were investigated. The obtained powder was applied as cathode materials in Na/Na+/NaxCo0.7Mn0.3O2-type cells. Cyclic voltammetry, specific capacity of a cathode material, reversibility and stability during charge-discharge cycles measurements were carried out to characterize electrochemical properties of the cells. The highest discharge capacity of Na/Na+/NaxCo0.7Mn0.3O2 cell was about 104 mAh•g-1 with C/35 current rate. The monotonous voltage changes were recorded in the range of 2.5-3.4 V. The Na0.7Co0.7Mn0.3O2-cathode material showed stability being in contact with electrolyte (1M solution of NaClO4 in carbon propylene) in the temperature range from -30 °C to 150 °C.
PL
Przeprowadzono badania elektrochemiczne, z zastosowaniem metody woltamperometrii cyklicznej oraz pomiarów galwanostatycznych masy czarnej pochodzącej z recyklingu zużytych ogniw cynkowo-węglowych. Wykazano, że proces wysokoenergetycznego mielenia wpływa na mechanizm reakcji oraz poprawia kinetykę procesu i pojemność rozładowania badanych mieszanek katodowych. Na podstawie wyników uzyskanych w trakcie rozładowania badanych materiałów prądem o stałych gęstościach wynoszących 10 i 25 mA/g stwierdzono, że optymalny czas mielenia wynosi 3 h.
EN
The black mass recycled from waste Zn-C cells was high-energy ball milled to study mechanism and improve the kinetics and discharge capacity of cathode mixts. The optimum milling time was 3 h according to measurements carried out at const. c. d. 10 and 25 mA/g.
PL
Przeprowadzono badania elektrochemiczne z zastosowaniem metody galwanostatycznej. Wykazano, że proces wysokoenergetycznego mielenia masy czarnej pochodzącej z recyklingu zużytych ogniw cynkowo-węglowych z dodatkiem ekspandowanego grafitu przyczynia się do wzrostu pojemności rozładowania badanych mieszanek katodowych. Na podstawie wyników uzyskanych w trakcie rozładowania badanych materiałów prądem o stałych gęstościach wynoszących 10 i 25 mA/g stwierdzono, że pojemność właściwa wzrasta wraz z wydłużaniem czasu mielenia.
EN
The black mass recycled from waste Zn-C cells and admixed with expanded graphite was high-energy ball milled to improve the discharge capacity of cathode mixts. The capacity increased along with time of milling according to the measurements carried out at const. c. d. 10 and 25 mA/g.
PL
W pracy przedstawiono opis syntezy nanometrycznego LiFePO4 oraz przygotowania na jego bazie kompozytu z dodatkiem węgla do zastosowania jako materiał katodowy w ogniwach Li-ion. Badano trzy metody wprowadzania dodatku węglowego: rozcieranie w moździerzu, mielenie w młynie oraz pirolizę żywicy nowolakowej. Na bazie otrzymanych kompozytów przygotowano ogniwa elektrochemiczne typu Li|Li+|LixFePO4. Dla tak skonstruowanych ogniw wyznaczono charakterystyki woltamperometryczne, pojemność właściwą materiału katodowego, odwracalność pracy ogniwa oraz stabilność podczas cyklicznego ładowania i rozładowania. W przypadku zastosowania materiału uzyskanego przez rozcieranie w moździerzu uzyskano ogniwa o napięciu ładowania i rozładowania odpowiednio 3,46 V i 3,50 V, pojemności rozładowania 166 mAh•g-1, odwracalności około 98% i stabilnej pracy w ciągu pierwszych dziesięciu cykli ładowania-rozładowania.
EN
This work presents procedures of the nano-sized LiFePO4 synthesis and preparation of LiFePO4-based composite cathode material with carbon addition for Li-ion batteries. Three methods of preparing the LiFePO4-C composite materials were investigated: grinding in an agate mortar, mechanical milling and pyrolysis of novolac resin. The obtained powders were applied as cathode materials in Li|Li+|LixFePO4-type cells. Cyclic voltammetry, specific capacity of the cathode material, reversibility and stability during charge-discharge cycles measurements were carried out to characterize electrochemical properties of the cells. The LiFePO4-C cathode material prepared by grinding in the mortar showed stable voltage of 3.46–3.50 V during charge and discharge cycling. The discharge capacity was about 166 mAh•g-1 with reversibility around 98% and high stability of capacity within the first ten cycles.
PL
W pracy zastosowano materiał katodowy La(0,6)Sr(0,4)Co(0,2)Fe(0,8)O3 (LSCF48) do otrzymania przewodzącej powłoki na interkonektorze ze stali ferrytycznej Crofer 22 APU z przeznaczeniem do budowy ogniwa SOFC. Powłoki LSCF48 w postaci pasty nakładano na powierzchnie stali metodą sitodruku, a następnie poddawano odpowiedniej obróbce termicznej. Do badań fizykochemicznych przygotowano trzy rodzaje próbek: próbki ze stali czystej (Crofer 22 APU), próbki z powłoką naniesioną na podłoże niemodyfi kowane powierzchniowo (Crofer 22 APU/LSCF48) oraz próbki z powłoką naniesioną na podłoże po uprzednim jego utlenianiu w 1073 K przez 24 godz. w powietrzu (Crofer 22 APU/Cr2O3/LSCF48). W oparciu o badania kinetyki utleniania w/w próbek w 1073 K przez 528 godz. w powietrzu stwierdzono, że najwyższą odporność na cykliczne warunki utleniania wykazuje układ Crofer 22 APU/LSCF48. Tak korzystne zjawisko wynika z faktu, że omawiana powłoka bez udziału warstwy przejściowej Cr2O3 wykazuje dobrą przyczepność do rdzenia metalicznego dzięki utworzeniu pośredniej warstwy reakcyjnej pomiędzy metalem a materiałem powłoki. Z utworzeniem tej warstwy reakcyjnej wiąże się też niższa powierzchniowa rezystancja elektryczna w 1073 K w powietrzu w porównaniu z czystą stalą Crofer 22 APU.
EN
In this work, La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O3 (LSCF48) cathode material was used to obtain a conductive coating on Crofer 22 APU ferritic steel interconnect in order to produce a SOFC stack. The LSCF48 coating was deposited on the steel surface via screen-printing and then was subjected to the appropriate thermal treatment. Three types of samples were prepared for physicochemical studies: (i) samples of pure steel (Crofer 22 APU), (ii) samples with coating deposited on the substrate without surface modification (Crofer 22 APU/LSCF48) and (iii) samples with coating deposited on the substrate after its oxidation at 1073 K for 24 hrs in air (Crofer 22 APU/Cr2O3/LSCF48). From the oxidation kinetics study of the afore-mentioned samples carried out at 1073 K for 528 hrs in air, it follows that the Crofer 22 APU/LSCF48 system shows the highest resistance against corrosion in cyclic oxidation conditions. Such a favorable phenomenon is the result of good adhesion between the afore-mentioned coating without the transient Cr2O3 layer and the metallic substrate, due to the formation of an intermediate reaction layer at the metal/coating interphase. The formation of this intermediate reaction layer also leads to lower area specific resistance in air at 1073 K in comparison to pure Crofer 22 APU steel.
PL
W artykule przedstawiono opis syntezy nanometrycznego LiFePO4 oraz metodę chemicznej modyfikacji powierzchni w celu uzyskania materiału katodowego dla ogniw typu Li-ion o wysokiej pojemności. Modyfikacja powierzchni polegała na poddaniu wyjściowego materiału działaniu atmosfery redukcyjnej (mieszanina Ar-H2) w temperaturze 300°C. Przygotowane materiały katodowe użyto do konstrukcji ogniw o schemacie Li/Li+/LixFePO4. Najlepsze uzyskane ogniwa charakteryzowały się pojemnością rozładowania 158 mAh·g-1 w ciągu 10 pierwszych cykli pracy przy odwracalności wynoszącej 0,99.
EN
In this work, we presented a procedure of synthesis of the nano-sized LiFePO4 and method of chemical surface modification in order to obtain cathode material for Li-ion batteries with high discharge capacity. The surface modification of LiFePO4 were performed by annealing in reducing atmosphere (Ar-H2 mixture) at 300°C. The LiFePO4 powders were used as cathode material in Li+/LixFePO4 cells. They exhibited high discharge capacity around 158 mAh·g-1 in first 10 cycles and excellent cyclic ability around 0.99.
PL
W pracy przedstawiono opis syntezy LiFePO4 polegającej na wytrącaniu osadu z roztworu zawierającego LiOH, FeSO4 i H3PO4. Jednofazowy materiał składający się z płytkowych krystalitów o rozmiarach 50 x 500 x 500 nm otrzymano po wysuszeniu uzyskanego osadu w 50°C. Wygrzewanie wyprasek przygotowanych z otrzymanego materiału w temperaturach od 300 do 800°C w atmosferze ochronnej powodowało poprawę krystaliczności materiału, znaczny rozrost krystalitów powyżej 600°C oraz spiekanie powyżej 700°C. Wypraska wygrzewana w 800°C osiągnęła gęstość bliską gęstości teoretycznej. Analiza spieków LiFePO4 metodą dyfrakcji rentgenowskiej wykazała, że podczas wygrzewania powyżej 400°C następuje stopniowy wzrost objętości komórki elementarnej, co prawdopodobnie można powiązać z parowaniem litu połączonym z utworzeniem wakancji kationowych i dziur elektronowych. Analiza przewodnictwa elektrycznego uzyskanych spieków wskazuje, że materiały wygrzewane w temperaturze 700 i 800°C charakteryzują się blisko dwukrotnie wyższym przewodnictwem (9,6•10-6 Sźcm-1) niż materiały wygrzewane w niższej temperaturze (5,5-6,3•10-6 Sźcm-1). Wykazują one również niższe wartości energii aktywacji (0,61-0,66 eV) w porównaniu z próbkami z niższych temperatur (0,76-0,85 eV). Przeprowadzone badania uzupełniono o testy pracy materiału w ogniwach Li/Li+/LixFePO4. Zgodnie z zarejestrowanymi charakterystykami napięcie pracy ogniwa wynosiło między 3,2 a 3,5 V. Pojemność ogniwa w pierwszym cyklu wyniosła około 60 mAhg-1. Następnie w początkowych cyklach obserwowano nieznaczny wzrost pojemności, a następnie stosunkowo szybki spadek aż do około 12 mAhg-1 w pięćdziesiątym cyklu.
EN
In this work, we describe a procedure of synthesis of the LiFePO4 material based on precipitation from a solution containing LiOH, FeSO4 and H3PO4. Single-phased material composed of lamellar crystallites of 50x50x500 nm in size was obtained after drying the precipitated deposit at 50°C. Annealing pellets at temperatures in the range from 300 to 800°C under inert atmosphere led to improvement of crystallinity, intense grain growth (above 600°C), and sintering (above 700°C). For the pellet annealed at 800°C, a density close to theoretical one was achieved. X-ray diffraction revealed that during annealing above 400°C the volume of unit cell gradually increased. Probably this can be connected with evaporation of lithium, which can be associated with the creation of cation vacancies and electron holes. Electrical conductivity measurements showed that LiFePO4 annealed at 700 and 800°C possesses nearly twice as high conductivity (9.6 Sźcm-1) as LiFePO4 annealed at lower temperatures (5.5-6.3 Sźcm-1). At the same time, the materials from higher temperatures were characterised by lower activation energy of electrical conductivity (0.61-0.66 eV) in comparison with the samples from lower temperatures (0.76-0.85 eV). The conducted research was complemented with the charge/discharge tests performed on a Li/Li+/LixFePO4 cell. According to the measured data, the discharge cell voltage was between 3.2 and 3.5 V. The first discharge capacity was about 60 mAhg-1. In the several following cycles, the capacity slightly increased and then gradually decreased to 12 mAhg-1 in the 50th cycle.
PL
Manganity i kobaltyny strontowo-cerowe o przewodności 185 i 300 Scm-1 otrzymane tradycyjną metodą reakcji w stanie stałym testowano jako materiały katodowe w tlenowych ogniwach stężeniowych. Katody w postaci grubych warstw naniesionych technologią sitodruku zostały wykonane w dwóch wersjach. W wersji pierwszej katody były warstwami manganitów z dodatkiem szkliw, a w wersji drugiej warstwami czystych manganitów lub kobaltynów. Poprzez wprowadzenie szkliw do warstw katodowych uzyskano zdecydowaną poprawę ich własności mechanicznych i adhezji do podłoża, ale jednocześnie wystąpił niekorzystny znaczący spadek przewodności i porowatości katod. Porowate warstwy katodowe z czystych manganitów lub kobaltynów o konduktywności 8-16 Scm-1 lub 58-80 Scm-1 otrzymano obniżając temperatury spiekania do odpowiednio 1050 lub 1000°C. Doświadczalne siły elektromotoryczne (SEM) ogniw z katodami Sr0,8 Ce0,2MnO3-δ i Sr0,9Ce0,1 CoO3-δ mierzone w przedziale temperatur 600 - 950°C posiadają dobrą zgodność z teoretycznymi wartościami SEM wyliczonymi z równania Nernsta.
EN
Strontium-cerium manganites and cobaltites with conductivities of 185 and 300 Scm[sup]-1 prepared by solid-state reaction were tested as cathode materials in oxygen concentration cells. Screen-printed cathode layers were made in two versions. In the first version the cathodes were manganite layers with addition of glasses and in the second version the layers consisted of pure manganites or cobaltites. Introduction of glasses into cathode thick films resulted in the improvement of their mechanical properties and adhesion to the substrate, but simultaneously caused a substantial, detrimental decrease of conductivity and porosity of cathode. Porous cathode layers of pure manganites or cobaltites were obtained at lower sintering temperatures - 1050 and 1000°C, respectively. Investigated electromotive forces (EMF) of cells with porous Sr0,8Ce0,2MnO3-δ and Sr0,9Ce0,1CoO3-δ. measured in temperature range 600 - 950°C are consistent with the theoretical values of EMF calculated from Nernst equation.
13
Content available remote Wysokotemperaturowe ogniwa paliwowe SOFC : problemy materiałowe
PL
W pracy przeanalizowano podstawowe właściwości materiałów dla wysokotemperaturowych ogniw paliwowych SOFC z punktu widzenia ich funkcjonalnych właściwości, takich jak: stabilność chemiczna, właściwości transportowe, katalityczne i termomechaniczne w warunkach pracy ogniwa.
EN
The paper summarizes and discusses the basic properties of solid oxide fuel cell (SOFC) components (electrode materials and electrolyte) from the point of view of their essential functional parameters such as chemical stability, transport, catalytic and thermomechanical properties under operational conditions in a SOFC.
14
Content available remote Tworzywa elektrodowe w procesach elektrochemicznych
PL
Opisano zależność zużycia energii elektrycznej od tworzywa elektrodowego oraz współcześnie stosowane tworzywa anodowe i katodowe w procesach elektrochemicznych przebiegających z wydzielaniem produktów w postaci gazowej. Tworzywem powszechnie stosowanym w procesie wydzielania chloru ze stężonych wodnych roztworów chlorku sodu jest tytan pokryty tlenkową warstwą aktywną zawierającą dwutlenek rutenu, charakteryzującą się niskim nadpotencjałem wydzielania chloru. Tworzywem stosowanym w procesie wydzielania wodoru z roztworów alkalicznych jest nikiel pokryty powłoką aktywną o niskim nadpotencjale wydzielania wodoru.
EN
The dependence of electric energy consumption on the kind of electrode material as well as anode and cathode materials currently used in the electrochemical processes in which gaseous products are obtained, have been described. The electrode material commonly used for chlorine evolution from concentrated brine is titanium covered with an active oxide layer RuO2–TiO2, demonstrating low chlorine evolution overpotential. The material used for hydrogen evolution from alkaline media is nickel covered with an active layer with low hydrogen evolution overpotential.
EN
The structure, electrical and electrochemical properties of phospho-olivine (LiFePO4) doped with aluminium were investigated. Some of the obtained samples had much higher electrical conductivities than the undoped material (10-4 S/cm compared to 10-10 S/cm). It has been stated that the enhanced conductivity is caused by a thin layer of reduced material that has metallic properties (probably iron phosphide), formed on the grain surfaces of phospho-olivine.
EN
The paper presents investigations on structural, electrical and electrochemical properties of phosphoolivine, LiFe0.45Mn0.55PO4, synthesized at high temperatures. Moessbauer spectroscopy measurements confirmed the occurrence of iron(II), and X-ray absorption near edge structure (XANES) measurements evidenced manganese(II) and iron(II). Impedance spectroscopy enabled the separation of electrical conductivity into electronic and ionic components. The substitution of manganese for iron led to a noticeable increase in the electronic component of conductivity and only to a slight increase in the ionic component, compared to pure LiFePO4. Also, the chemical diffusion coefficient of lithium measured by GITT turned out larger in LixFe0.45Mn0.55PO4. It has been stated that the increased electronic conductivity in manganese-doped phospho-olivine activates the diffusional mechanism of lithium deintercalation.
17
Content available remote Lithium-ion batteries - state of art. Novel phospho-olivine cathode materials
EN
This work is a brief review of physicochemical properties of modern cathode materials for Li-ion batteries. These intercalated transition metal compounds of layered, spinel or olivine-type structure exhibit a correlation between their microscopic electronic properties and the efficiency and mechanism of lithium intercalation. The recently reported metallic-type conductivity of doped phospho-olivine LiFePO4, being a novel promising cathode material, is discussed in more detail, and some fundamental arguments are presented against the bulk nature of the observed high electronic conductivi
EN
La1-xSrxCo1-y-zFeyNizO3 perovskites have been synthesized with hexagonal R-3c structures by a modified citric acid method and determined their structural and transport properties. Structural instabilities for samples with high Ni and Sr content heated to 1270 K were observed, leading to the appearance of secondary phases with spinel structures. Moessbauer studies revealed the presence of two different, clearly distinguishable surroundings of Fe ions, despite single crystallographic positions of iron ions. Low-temperature (77-300 K) dc conductivity and thermoelectric power measurements suggest an activated charge transport mechanism with the activation energy strongly dependent on the chemical composition of the material. Electrical conductivity as a function of temperature suggests the appearance of a hopping mechanism. The observed hightemperature (870-1070 K) dc electrical conductivity of La1-xSrxCo1-y-zFeyNizO3 samples is relatively high and strongly depends on chemical composition. It seems possible to optimise the transport properties of La1-xSrxCo1-y-zFeyNizO3 by chemical composition, which may lead to a new, attractive cathode material in terms of possible applications in intermediate -temperature solid-oxide fuel cells (IT-SOFCs).
EN
This paper presents the results of applying the 57Fe Mössbauer effect technique to studies of the delithiation mechanism of LixMn0.55Fe0.45PO4 olivine samples, and also investigations of the origin of the widely discussed, astonishing high electronic conductivity of tungsten-doped LiFePO4 samples, providing evidence of the presence of a residual, iron-containing and highly conductive phase. The delithiation process is perceived by iron ions as a change of their valence and symmetry of the local surroundings upon lithium extraction. The LixMn0.55Fe0.45PO4 compound, which belongs to a novel group of cathode materials for Li-ion batteries, exhibits a single-phase deintercalation region, in contrast to LiFePO4 exhibiting two-phase mechanism of electrochemical lithium extraction/insertion in the entire lithium concentration range, as well as to LiMnPO4, for which the deintercalation process is practically irreversible. The range of deintercalation mechanism in LixMn0.55Fe0.45PO4 was found to be exactly related to the content of Fe2+ ions in the cathode material. A surface sensitive technique, Conversion Electron Mössbauer Spectroscopy (CEMS), was used to prove the presence of traces of iron phosphides on the grain surfaces of tungsten-doped LiFePO4 samples, pointing to the minor phase as being responsible for the high electronic conductivity of these samples.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.