Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  leaf disease detection
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Leaf diseases may harm plants in different ways, often causing reduced productivity and, at times, lethal consequences. Detecting such diseases in a timely manner can help plant owners take effective remedial measures. Deficiencies of vital elements such as nitrogen, microbial infections and other similar disorders can often have visible effects, such as the yellowing of leaves in Catharanthus roseus (bright eyes) and scorched leaves in Fragaria ×ananassa (strawberry) plants. In this work, we explore approaches to use computer vision techniques to help plant owners identify such leaf disorders in their plants automatically and conveniently. This research designs three machine learning systems, namely a vanilla CNN model, a CNN-SVM hybrid model, and a MobileNetV2-based transfer learning model that detect yellowed and scorched leaves in Catharanthus roseus and strawberry plants, respectively, using images captured by mobile phones. In our experiments, the models yield a very promising accuracy on a dataset having around 4000 images. Of the three models, the transfer learning-based one demonstrates the highest accuracy (97.35% on test set) in our experiments. Furthermore, an Android application is developed that uses this model to allow end-users to conveniently monitor the condition of their plants in real time.
EN
Plant diseases are a foremost risk to the safety of food. They have the potential to significantly reduce agricultural products quality and quantity. In agriculture sectors, it is the most prominent challenge to recognize plant diseases. In computer vision, the Convolutional Neural Network (CNN) produces good results when solving image classification tasks. For plant disease diagnosis, many deep learning architectures have been applied. This paper introduces a transfer learning based model for detecting tomato leaf diseases. This study proposes a model of DenseNet201 as a transfer learning-based model and CNN classifier. A comparison study between four deep learning models (VGG16, Inception V3, ResNet152V2 and DenseNet201) done in order to determine the best accuracy in using transfer learning in plant disease detection. The used images dataset contains 22930 photos of tomato leaves in 10 different classes, 9 disorders and one healthy class. In our experimental, the results shows that the proposed model achieves the highest training accuracy of 99.84% and validation accuracy of 99.30%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.