Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  inertial measurement unit
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Background: The aim of the study was to answer two questions: 1 – Can data processing algorithms ensure sufficient accuracy for estimating human body pose via wearable systems? 2 – How to process the IMU sensor data to obtain the most accurate information on the human body pose? To answer these questions, the authors evaluated proposed algorithms in terms of accuracy and reliability. Methodology: data acquisition was performed with tested IMU sensors system mounted onto a Biodex System device. Research included pendulum movement with seven angular velocities (10-120°/s) in five angular movement ranges (30-120°). Algorithms used data from accelerometers and gyroscopes and considered complementary and/or Kalman filters with adjusted parameters. Moreover, angular velocity registration quality was also taken into consideration. Results: differences between means for angular velocity were 0.55÷1.05°/s and 1.76÷3.11%. In the case of angular position relative error of means was 4.77÷10.84%, relative error of extreme values was 2.15÷4.81% and Spearman’s correlation coefficient was 0.74÷0.89. Conclusions: Algorithm calculating angles based on acceleration-derived quaternions and with implementation of Kalman filter was the most accurate for data processing and can be adapted for future work with IMU sensors systems, especially in wearable devices that are designated to support human in daily activity.
EN
Typically, an inertial navigation system (INS) is used to determine the position, speed, and orientation of an object moving relative to the earth's surface. The navigation information (position, speed and orientation) of an unmanned aerial vehicle (UAV) is needed to control its flight. Since the resistance of INS to interferences is very high, it is possible to ensure reliable flights in conditions of high-intensity noise. This article explores the principles of constructing inertial measurement units (IMU) that are part of the INS and indicates perspective directions for their development. Micro-electromechanical inertial measurement units were studied in this work, and functional and principal electrical circuits for connecting units of inertial measurements to the microcontroller were developed. The results of practical measurements of units without calibration and after calibration were obtained using the created laboratory device. Based on the obtained results, the necessity of sensor calibration was revealed, and accuracy was improved by performing calibration with the Kalman filter algorithm. The Kalman filter is the heart of the navigation system. In a low-cost system, IMU errors like bias, scale factor error and random walk noise dominate the INS error growth.
EN
Although inertial measurement unit (IMU)-based systems have been validated against optoelectronic systems for recording joint kinematics, the accuracy of each system must be evaluated, and measurements from different systems cannot be easily compared. Therefore, this study compared the joint angles recorded using the IMU-based MyoMotion system and the optoelectronic BTS Smart-DX 700 system during Nordic walking. Methods: The study subject, a long-time Nordic walking instructor, was assigned to walk 12 m/trial (14 trials with 5 sampled gait cycles) at a velocity preferred for Nordic walking. The trials were simultaneously recorded by both systems. The instantaneous lower (ankle, knee, hip) and upper (shoulder, elbow, wrist) limb joint angles were recorded. Results: The joint angles from MyoMotion were significantly larger or smaller (depending on the joint and plane) than those from BTS. Conclusions: Joint angles measured by MyoMotion are not interchangeable with values from BTS, and IMU-recorded values should be interpreted carefully. However, MyoMotion can still provide information about intra-individual changes based on the joint angle profiles, e.g., following Nordic walking training.
EN
Although it is well-established that exoskeletons as robots attached to the human body's extremities increase their strength, limited studies presented a computer and mathematical model of a human leg pneumatic exoskeleton based on anthropometric data. Methods: By using Inertial Measurement Units a lower limb joint angles (hip, knee and ankle in sagittal plane) during walking and running were calculated. The geometric model of a human leg pneumatic exoskeleton was presented. Joint angle data acquired during experiments were used in the mathematical model. Results: The position and velocity of exoskeleton actuators in each phase of the movement were calculated using the MATLAB package (Matlab_R2017b, The MathWorks Company, Novi, MI, USA). Conclusions: The obtained results demonstrate the efficiency of the proposed approach that can be utilized to analyze the kinematics of pneumatic exoskeletons using the dedicated design process. The developed mathematical model makes it possible to determine the position of lower limb segments and exoskeleton elements. The proposed model allows for calculating the position of the human leg and actuators' characteristic points.
EN
In this paper, an innovative active seat suspension system for vehicles is presented. This seat suspension prototype is built with a shear guidance mechanism, an air spring, a hydraulic shock absorber and end-stop buffers. The acceleration particular signals are measured by using Inertial Measurement Units (IMUs) placed on the seat and the human head. As the excitation, the horizontal vibrations are applied. As an alternative to the classical Fourier approach, the Wavelet Transfer Function (WTF) is introduced to describe the effectiveness of particular seat suspension. In both of the system cases, the human head reaction is investigated by using the Matlab package.
EN
Background and objective: The purpose of this paper is to provide a method for supporting navigation in bronchoscopy based on measurements of absolute orientation of a tip of a bronchoscope and the length a bronchoscope is pushed in the lumen of an examined bronchial structure. Methods: A hardware solution is designed and developed for collecting the data related to the absolute orientation of a tip of a bronchoscope and the length a bronchoscope is pushed in the lumen of an examined structure. A software which processes these data and visualizes in real-time the actual location of a bronchoscope tip in the lumen of a digital model of the examined structure (i.e. virtual bronchoscopy) is also designed and implemented. Results: A calibration procedure is developed which constitutes a basis for the operation of the proposed system. A phantom of a tree-like structure is build, imitating the anatomy of a bronchial tree, and the proposed method of navigation is tested for the task of navigating in the lumen of the phantom to user-selected target locations. Conclusion: A method has been proposed and tested for Inertial Measurement Unit (IMU)- based support of navigation in bronchoscopy.
PL
W artykule przedstawiono projekt mobilnego robota holonomicznego, przy czym szczególną uwagę zwrócono na jego sterowanie. Omówiono sposób przetwarzania wartości z czujnika inercyjnego na sygnały elementów wykonawczych, tworzących wraz z kołami szwedzkimi zdefiniowany wcześniej układ holonomiczny. W celu określenia poprawności funkcjonowania robota przeprowadzono szereg testów obejmujących jego oprogramowanie, a następnie wyznaczono podstawowe parametry charakteryzujące mobilność robota.
EN
The article presents the design of mobile holonomic robot, where special attention was given to the robot’s control method. It discusses the way of processing values from an inertial measurement unit to actuator signals. In order to determine the correct functioning of the robot, a number of tests were carried out covering its software, and followed by the determining of basic parameters characterizing robot’s mobility.
EN
The paper presents a method of calculation of position deviations from a theoretical, nominally rectilinear trajectory for a SAR imaging system installed on board of UAV. The UAV on-board system consists of a radar sensor, an antenna system, a SAR processor and a navigation system. The main task of the navigation part is to determine the vector of differences between the theoretical and the measured trajectories of UAV center of gravity. The paper includes chosen results of experiments obtained during ground and flight tests.
9
Content available remote Projekt dwukołowego samobalansującego pojazdu
PL
Artykuł zawiera opis budowy dwukołowego samobalansującego pojazdu. Zostały w nim omówione główne części pojazdu oraz sposoby wyznaczenia, interesujących z punktu widzenia projektu, własności podzespołów użytych w budowie pojazdu. Poza opisem części sprzętowej została również omówiona część projektu związana z oprogramowaniem mikrokontrolerów wykorzystywanych przez pojazd. Dodatkowo przedstawiono sposób obliczania najważniejszych parametrów pojazdu. Wyniki obliczeń zostały zweryfikowane eksperymentalnie.
EN
The article describes the design and construction of two-wheeled self-balancing vehicle. The main parts of the vehicle and the designation methods of properties of the components used in the construction of the vehicle were discussed. In addition to describing the hardware part, the part of the project related to software used by the vehicle microcontrollers has also been discussed. Also, manner of calculations of important parameters of the vehicle was presented. Conducted calculations were verified by experimental results.
EN
The paper presents a part of a prototype system for the monitoring of selected vital functions of humans and some preliminary results obtained from the device using implemented algorithm. The system consists of such essential modules like a microcontroller board, an inertial measurement unit and additional sensors. The main task of the device is human movement monitoring and detecting selected anomalies, e.g. fall or fainting. At the first stage, the movement classification was considered. The main movement type are walking, running and selected variants of transitions between different phases like standing up or going downstairs. The determining of the movement is based on the intuitive algorithm using raw data from accelerometers complemented by sensors like barometer and heart rate monitor. The algorithm utilizes automated multiscale-based peak detection and wavelet transform energy calculations. Finally, some further work directions and development possibilities are discussed.
EN
The paper presents a method of localization of a mobile robot which relies on aggregation of data from several sensors. A review of the state of the art regarding methods of localization of ground mobile robots is presented. An overview of design of the four-wheeled mobile robot used for the research is given. The way of representation of robot environment in the form of maps is described. The localization algorithm which uses the Monte Carlo localization method is described. The simulation environment and results of simulation investigations are discussed. The measurement and control equipment of the robot is described and the obtained results of experimental investigations are presented. The obtained results of simulation and experimental investigations confirm the validity of the developed robot localization method. They are the foundation of further research, where additional sensors supporting the localization process could be used.
PL
Opisano budowę i działanie stanowiska do pomiarów i testowania algorytmów stosowanych w nawigacji inercyjnej. Przedstawiono opis modułów inercyjnych wraz z potencjalnymi źródłami błędów pomiarowych.
EN
The article describes a work stand for testing and developing inertial navigation algorithms. There is also a description of the inertial modules, along with potential measurement errors sources.
PL
W artykule zaprezentowano system akwizycji skorygowanej siły uogólnionej kontaktu narzędzia manipulatora z otoczeniem oparty o nadgarstkowy czujnik sił i momentów sił oraz dodatkową jednostkę inercyjną. Opracowany system z jednej strony eliminuje w znacznym stopniu błędy związane z wpływem ciężaru narzędzia, siły grawitacji a nawet sił bezwładności, z drugiej przeznaczony jest do współpracy z tanimi i sprawdzonym manipulatorami przemysłowymi, czyniąc je platformami badawczymi robotyki usługowej.
EN
The article considers an acquisition system of general force measured between manipulator’s end-effector and the environment using six axis force transducer mounted in manipulator wrist and additional inertial measurement unit. The proposed solution significantly improves the initial force measurement by reducing the influence of tool weight, gravitational force and inertial force. It can be used to develop a cheap industrial robot to a service robot test platform.
EN
The altitude measurements and the error information provided by the Novatel SPAN-CPT GPS receiver are reliable under good GPS signal reception, however, the adoption of this system in the machine for renovation of open water courses will be affected by the utilization or not of the Inertial Measurement Unit (IMU) during bad GPS signal conditions. Taking as reference the measurements performed under good GPS signal conditions, this paper compares the measurements obtained under bad GPS Signal conditions with and without IMU corrections.
PL
Dokładny pomiar wysokości przez odbiornik GPS SPAN-CPT jest zapewniony przy dobrym sygnale GPS. W złych warunkach terenowych dokładność może być zwiększona przez wykorzystanie dodatkowej korekty, pochodzącej od jednostki żyroskopowej (IMU). W artykule porównano wyniki pomiarów dokładności pozycjonowania z włączonym żyroskopem i bez jego użycia.
15
Content available remote Układ inercyjny do pomiaru orientacji obiektów
PL
Praca przedstawia założenia i konstrukcję układu do pomiaru orientacji obiektów. Układy tego typu składają się z akcelerometrów, żyroskopów oraz magnetometrów. Informacje pomiarową stanowią kąty obrotu wokół poszczególnych osi układu trójwymiarowego XYZ. Wyniki pomiarów są obarczone błędami wynikającymi ze sposobu pomiaru oraz wpływu różnego rodzaju zakłóceń, głównie pola magnetycznego Ziemi. W celu otrzymania wiarygodnych pomiarów i informacji o orientacji obiektu zastosowano filtry cyfrowe.
EN
The assumptions and design of inertial measurement unit is presented. The IMU measures angles of rotation. The information is imprecise due to drift and geomagnetic field. For this reason the digital filter concept is presented and implemented. Complete calibration and alignment methods are described.
16
Content available remote Coarse alignment algorithm for ADIS16405
EN
The paper presents the coarse alignment algorithm for the sensor ADIS16405. The ADIS16405 is the new six-degree of freedom inertial measurement unit which is produced by Analog Devices. The main goal of the paper is to describe determination of the initial attitude of the sensor with respect to the navigation frame as a referenced frame. In this work the attitude is represented by the Euler angles (the roll, pitch and yaw angles). Developed coarse alignment algorithm is implemented for the real-time integrated navigation system that is in a progress nowadays.
PL
Artykuł prezentuje algorytm zgrubnego ustawiania czujnika ADIS16405. Czujnik ADIS16405 firmy Analog Devices jest czujnikiem inercyjnym o sześciu stopniach swobody. Głównym celem pracy jest zaproponowanie metody określania początkowej ustawień czujnika względem obszaru nawigacji. Ustawienia reprezentowane są przez kąty Eulera. Algorytm powinien pracować w czasie rzeczywistym w systyemie nawigacyjnym.
EN
Part One of this paper describes rudiments of integrated DGPS/IMU system as an introduction to the system evaluation description which forms Part Two of the sequence. In the first section of Part One the fundamental aspects of the satellite Global Positioning System GPS, Differential GPS and of the Inertial Measurement Unit IMU are summarised. In its second, main section, Part One discusses the software combination of the DGPS and inertial sensor, summarises the benefits of such a combination for the landborne navigation, and demonstrates the methodology of the Kalman filter parameters estimation. The paper concludes by briefly delineating the specific realisation of the DGPS/(Low-Cost IMU) design describing the hardware and software components with the special emphasis on the vehicular navigation.
PL
W pierwszej części pracy podane są podstawy teoretyczne systemów satelitarnych GPS, DGPS (Differential Global Positioning System), oraz inercjalnych INS (Inertial Navigation System) i IMU (Inertial Measurement Unit). Następnie przedstawione są zasady programowej integracji systemów satelitarnego oraz inercjalnego opartej na filtrze Kalmana. Ostatnia część pracy zajmuje się opisem konkretnej realizacji prototypu zintegrowanego systemu DGPS/(Low-Cost IMU Niniejsza części 1/2 pracy służy jako wprowadzenie do części 2/2 zajmującej się dyskusją wyników badań ww. systemu.
EN
The objective of Part Two of this paper is to validate a prototype of an integrated navigation system linking Differential Global Positioning System DGPS and Inertial Measurement Unit IMLT, described in more detail in Part One of the sequence. Part Two demonstrates an actual performance of the prototype mounted on a dedicated land vehicle. The paper at first characterises the landborne test-beds. Then it presents the methodology and list some results from the vehicular DGPS/IMU navigation experiments. In the final part the paper addresses the issue of the accuracy and integrity of the navigation solution. It gives the accuracy-wise summary in function of the land-test areas and an institutional summary in terms of the prototype DGPS/1MU system efficiency appraisal. The paper concludes presenting a rationale for a number of vehicle satellite/inertial navigation applications in Poland.
PL
Część 2/2 pracy przeprowadza próbę oceny zintegrowanego satelitarno-inercjalnego systemu nawigacyjnego DGPS/IMU wykorzystując testy prototypu zamontowanego w samochodzie. We wstępie prezentuje się rozkład geograficzny poligonów testowych, dyskutuje ich własności fizyczne i przedstawia metodologię eksperymentów. Następnie podaje się pewne opracowanie danych doświadczalnych. Rozważania te przeprowadza się w funkcji własności fizycznych poligonów testowych i z punktu widzenia zjawiska wielodrożności, efektu przesłaniania sygnału GPS i telemetrii. Dyskutuje się zachowanie takich parametrów rozwiązania nawigacyjnego jak dokładność oraz ocena stopnia zaufania operatora do systemu ('integrity'). W podsumowaniu wyciąga się wnioski dotyczące możliwej eksploatacji systemu DGPS/IMU w lądowym środowisku nawigacyjnym w Polsce do 2000 roku.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.