Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hydrogen combustion
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Accelerating the process of the transport and energy sectors increases the interest in fuels derived from renewable sources. The predicted three-fold increase in hydrogen production by 2050, driven by its falling production costs, justifies the direction of research aimed at its popularisation as a fuel for internal combustion engines (H2ICE). The presented article provides an overview of the state of knowledge on hydrogen combustion systems, which are currently the most attractive development path, mainly due to the well-developed production technology and relatively low recycling cost compared with fuel cells. The paper contains a comprehensive analysis of currently available solutions covering issues related to the production, storage, and transmission of hydrogen, with particular emphasis on the Polish market, which is one of the largest in Europe in terms of its production. The authors also propose their own concept of a hydrogen combustion system for application in an internal combustion engine. The presented solution is based on the idea of prechamber introduction in order to improve combustion process parameters and hence overall engine efficiency.
EN
The modern solution of two-stage combustion, namely the Turbulent Jet Ignition (TJI), enables the combustion of ultra-lean mixtures. Thanks to this solution, it became possible to reduce fuel consumption and, at the same time, to increase the combustion process indicators (including the overall combustion system efficiency). The article presents the results of numerical tests of a heavy-duty engine equipped with the TJI system running on gas fuels. The AVL BOOST software was used to analyze the effects of different fuel injection rates into the pre-chamber and various ignition timing angles, while maintaining a constant global excess air ratio. Increasing the proportion of hydrogen in the prechamber resulted in its reduction in the main chamber (the fuel dose was kept constant with different excess air coefficients in each of the chambers). The maximum combustion pressure values in both chambers were investigated. Changes in the amount of heat released and its release rate were determined. As a result of the simulations, different ignition and combustion conditions were presented for the tested fuels. Based on this, maps of fuel dose to prechamber vs. ignition advance angle were drawn up, showing selected thermodynamic indicators of the combustion process.
EN
In order to ensure better control of the combustion process in a internal combustion engine powered by hydrogen, it has been proposed to use a split combustion chamber solution. Following paper contains a description of a hydrogen combustion system that includes an analysis of possible technical solutions. The considerations take into account the issues of the dual nature of hydrogen knocking and the problem of burning a stratified charge of a hydrogen-air mixture in a cylinder.
PL
W procesach produkcji, przetwarzania i magazynowania energii coraz większą rolę będzie odgrywał wodór. W artykule omówiono możliwości spalania wodoru w turbinach gazowych. Pod względem właściwości fizykochemicznych wodór różni się od gazu ziemnego, co ma istotny wpływ na przebieg i organizację procesu spalania. Z tym wyzwaniem mierzą się obecnie producenci turbin gazowych. W artykule dokonano także przeglądu możliwości spalania wodoru w turbinach (stan na koniec minionej dekady) oraz przedstawiono plany na najbliższą przyszłość.
EN
Hydrogen will play an increasingly important role in the processes of energy production, conversion and storage. The paper discusses the current technologies for burning hydrogen in gas turbines. As regards physicochemical properties, hydrogen differs from natural gas, which has a significant impact on the course and organization of the combustion process. That’s a challenge currently faced by gas turbine manufacturers. The paper also reviews possible modes of hydrogen combustion in turbines (as at the end of the last decade) and presents plans for the near future.
5
Content available Hydrogen fuel in transportation
EN
In the time, when the whole world is increasingly engaged in environmental protection, it is necessary to come up with a fuel alternative for transportation, which means generally abandon the use of non-renewable resources (petrol, oil and fossil fuel in general), as they are one of the many factors influencing the emergence of greenhouse gases and the associated global warming. In today's Europe, the pressure is put mainly on automotive companies, to search for sources other than conventional fuels. At present, there is a big boom in the area of electric cars powered from the power network – the vast majority of electric energy, however, is produced in fossil fuel power plants. The second option of possible development in this area is the use of hydrogen as an alternative fuel. This technology, whether it be direct combustion as in diesel or eventually in petrol engines, or energy production in a hydrogen fuel cell, is certainly the way suitable for further development. With hydrogen as a fuel, it is possible to reduce pollutants almost to zero. The article presents a comparison of electricity generated using renewable and non-renewable sources and focuses on a closer understanding of the myth of the dangers connected with using hydrogen as fuel. Furthermore, compares conventional fuels to re-newable hydrogen technologies and focuses on the hydrogen combustion engines together with hydrogen storage and application in transportation.
EN
The article presents the preliminary work on the adaptation of the combustion chamber of aviation turbo-shaft engine to supply it with hydrogen for ground energy generation purposes. Difficulties and problems of both design and operational matters for the use of hydrogen as a basic fuel have been presented. The paper presents mathematical formulation, boundary conditions and assumptions for the concept. With the use of ANSYS CFX commercial code a hydrogen combustion process for pre-optimized design of the burner has been simulated. The results are presented in the form of distributions of temperature, velocity and concentrations of individual components which were used to analyze the changes that have occurred in the combustion kinetics after using gaseous fuel. Results indicated the direction of further work on the optimization of processes occurring in the combustion chamber of the turbo-shaft engine.
EN
Wankel engines were very attractive in automotive sector almost forty years ago because of small dimensions, compactness, simple design, smoothness of engine work and lack of vibration caused by inertia forces. The disadvantage of such engine was very high pollution, especially of hydrocarbons and carbon monoxide and high fuel consumption. These disadvantages can be eliminated by applying of direct injection of hydrogen and in the aviation sector by applying of fuel with high octane number also at a direct injection system. The main objective of the work is modelling of the thermodynamic process taking place during the scavenge process in such engine. At assumed geometry of the engine, initial and boundary conditions the change of engine parameters such as pressure, temperature, density, heat exchange and volume are calculated on the base of zero-dimensional model as a function of rotation angle of the piston. Forming of the mixture during fuel injection process in compression process gives information about the air excess ratio. The presented model is applicable for different sort of fuels. This work is introduction to a broader analysis of the processes in spatial system. Application of hydrogen reduces of toxic components emission from such engine, but decreases also engine power.
PL
Silnik Wankla byl bardzo interesujący dla przemysłu samochodowego prawie czterdzieści lat temu ze względu na małe wymiary, kompaktowość, prostą konstrukcję, równomierność pracy silnika i brak drgań wywołanych siłami bezwładności. Wadą tego silnika była duża toksyczność emitowanych spalin, szczególnie węglowodorów i tlenków azotu oraz duże zużycie paliwa. Te niedoskonałości silnika mogą być wyeliminowane dzięki zastosowaniu bezpośredniego wtrysku paliwa o dużej liczbie oktanowej lub wodoru. Głównym celem pracy jest modelowanie parametrów termodynamicznych procesów zachodzących w czasie przepłukania w tym silniku. Przy założonych parametrach geometrycznych silnika, warunkach brzegowych i początkowych obliczono zmiany parametrów takich, jak: ciśnienie, temperatura, gęstość, prędkości wlotu i wylotu za pomocą własnego programu komputerowego opartego na modelu 0-D w funkcji kąta obrotu wału korbowego. Tworzenie mieszanki podczas wtrysku paliwa daje informację o współczynniku nadmiaru powietrza. Zaprezentowany model obliczeniowy jest dostosowany do różnego rodzaju paliwa. Praca jest wstępem do szerszej analizy procesów przestrzennych w komorze spalania. Zastosowanie wodoru zmniejsza emisję szkodliwych składników spalin, lecz zmniejsza również moc silnika.
PL
Praca składa się z dwóch części. Pierwsza prezentuje zagadnienia teoretyczne dotyczące wodoru jako paliwa alternatywnego do zastosowania w silniku z zapłonem samoczynnym. Drugą część stanowi analiza wyników badań współspalania wodoru rozpuszczonego w oleju napędowym. Badania miały na celu ocenę wpływu dodatku wodoru na stężenie związków toksycznych emitowanych przez silnik badawczy. Badania zostały przeprowadzone w trzech wariantach. Pierwszy wariant stanowił poziom odniesienia do pozostałych wyników i został przeprowadzony na silniku zasilanym niewzbogacanym olejem napędowym. W przypadku drugiego i trzeciego wariantu do silnika był dostarczony roztwór oleju napędowego z wodorem wprowadzony do mieszalnika przy ciśnieniu 0,1 bar i 0,2 bar nadciśnienia.
EN
The work consists of two parts. The first presents the theoretical issues about hydrogen as an alternative fuel for use in compression ignition engine. The second part is an analysis of the results of co-combustion of hydrogen dissolved in diesel fuel. This study was to evaluate the effect of the addition of hydrogen to the concentration of toxic compounds emitted by the engine research. The study was conducted in three variants. The first option was the benchmark for the rest of the results and was carried out on the engine with diesel-powered. In the second and third variant it was delivered to the engine oil solution of hydrogen introduced into the mixer at a pressure of 0.1 bar and 0.2 bar overpressure.
9
Content available remote Propagation of hydrogen-air detonation in tube with obstacles
EN
An experimental and computational study of flame propagation, acceleration and transition to detonation in stoichiometric hydrogen-air mixtures in 6 m long tube filled with obstacles located at different configurations was performed. The initial conditions of the hydrogen-air mixtures were 0.1 MPa and 293 K. Four different cases of obstacle blockage ratio (BR) 0.7, 0.6, 0.5 and 0.4 and three cases of obstacle spacing were used. The wave propagation was monitored by piezoelectric pressure transducers PCB. Pressure transducers were located at different positions along the channel to collect data concerning detonation propagation. Tested mixtures were ignited by a weak electric spark at one end of the tube. In order to support the experimental results we performed series of CFD simulations for the same conditions of hydrogen-air mixtures and the geometry of the tube. The simulation tool used in this study was a two-dimensional DETO2D code, dedicated to simulate the propagation of gaseous detonations in complex geometries.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.