Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 30

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  hybrid vehicles
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Vehicle coolant is one of the most important operating fluids. Along with changes in the design of engines, the composition of the coolant has also changed. The main function of the coolant is heat transfer (HT). It absorbs up to one-third of the heat energy generated by the engine. The coolant is also responsible for protecting the cooling system from damage caused by corrosion, scaling and deposits. The unfavorable working environment of the engine is also affected by smaller capacities of the cooling systems (CSs) of the drive units, extreme temperatures and increased pressure in the CS, enhancing the importance of the fluid composition. The coolant must be replaced every three years or 100,000 kilometers or every five years or 250,000 kilometers with the Organic Acid Technology (OAT). It is worth remembering that coolant of unknown composition or low quality used for a long time can expose the system to engine overheating, corrosion, deposits and restriction of liquid flow. This can lead to engine failure, in extreme cases even engine seizure. Currently, many types of fluids, including nanocoolants with different compositions, are available on the cooling market. The article presents these fluids, describe the most common failures of CSs, present the currently used methods of fluid replacement in the engine and proposes an innovative method based on the pressure method, which allows both replacing the fluid in the entire system and cleaning it.
2
Content available remote Buck converter topology for fuel cell hybrid vehicles
EN
Fuel cell hybrid vehicles are electric vehicles with energy conversion technologies that combine fuel cells and batteries. The Energy Management System is crucial to the fuel cell hybrid system's operation since it lowers the system's hydrogen usage. This study looks into how to best manage the fuel cell hybrid vehicles' connected DC/DC converter topologies. The results of the simulations run in Matlab-Simulink show that the suggested buck converter is efficient and a better option for use in electrical vehicle applications. Due to its lower emissions and increased fuel efficiency, fuel cell-powered hybrid electric vehicles (HEV) are being developed by many automobile firms. Power electronics is the important technology for the development of fuel cells for propulsion. This document details various DC/DC converter topologies that are employed to link HEV motor controllers to fuel cells. The objective is to offer a straightforward and useful boost converter topology with a coordinated control that can simultaneously control both the output voltage and input current. The outcomes of simulations run under various dynamics are used to assess the buck converter's performance.
PL
Pojazdy hybrydowe z ogniwami paliwowymi to pojazdy elektryczne z technologiami konwersji energii, które łączą ogniwa paliwowe i akumulatory. System zarządzania energią ma kluczowe znaczenie dla działania hybrydowego systemu ogniw paliwowych, ponieważ zmniejsza zużycie wodoru przez system. W badaniu tym zbadano, jak najlepiej zarządzać topologiami połączonych przetwornic DC/DC pojazdów hybrydowych z ogniwami paliwowymi. Wyniki symulacji przeprowadzonych w programie Matlab-Simulink pokazują, że proponowana przetwornica jest wydajna i lepiej nadaje się do zastosowań w pojazdach elektrycznych. Ze względu na niższą emisję i zwiększoną oszczędność paliwa, wiele firm motoryzacyjnych opracowuje hybrydowe pojazdy elektryczne (HEV) napędzane ogniwami paliwowymi. Energoelektronika jest ważną technologią dla rozwoju ogniw paliwowych do napędu. W tym dokumencie wyszczególniono różne topologie przetwornic DC/DC, które są wykorzystywane do łączenia sterowników silników HEV z ogniwami paliwowymi. Celem jest zaoferowanie prostej i użytecznej topologii przetwornicy podwyższającej napięcie ze skoordynowanym sterowaniem, które może jednocześnie kontrolować zarówno napięcie wyjściowe, jak i prąd wejściowy. Wyniki symulacji przeprowadzonych przy różnej dynamice służą do oceny działania przetwornicy buck.
EN
A control system for a three-phase induction motor was designed with the use of optoelectronic components and methods. Motor speed was controlled by changing supply voltage frequency. This solution ensures a wide range of rotational speeds, constant torque and effective start-up of an induction motor. The designed motor is supplied with direct current converted to three-phase alternating current. The adopted solution relies on renewable sources of energy to produce DC power. The designed electric motor is controlled by changing supply voltage frequency. Input voltage with the desired waveform is generated by the motor’s electronic system that relies on two microcontrollers. The presented solution features a user interface.
EN
Implementation of hybrid drives in rail vehicles is a solution aimed at limiting the negative environmental impact of transport. The use of fuel cell systems is a contemporary trend in the development of locomotives. The paper presents an energy flow analysis in a hybrid locomotive powered using fuel cells. The parallel hybrid drive system consisted of fuel cells, batteries and an electric motor. The simulations and analyzes were performed with the use of AVL Cruise M software. A simulated route, with a length of approximately 300 km, was used as basis for the analysis, taking into account a typical speed profile of a locomotive in passenger traffic. The energy flow and consumption values were estimated, and mean hydrogen consumption values were determined.
EN
In this project, a system was designed there was designed a system for charging batteries in electric vehicles using photovoltaic panels. Low cost of operation, cheap reliable construction and simple user interface were among the main criterias taken into account. Each energy source was carefully selected and, modules were used so that they could in the way to power the microcontroller and charge the energy storage source. This article is a part of a project related to the design of digital control devices with electric drives carried out at the UWM.
EN
In recent years, electric and hybrid vehicles have taken more and more attention due to their apparent advantages in saving fuel resources and reducing harmful emissions into the environment. Even though electric vehicles can solve the ecological problem, their operation is faced with a number of inconveniences associated with a limited driving distance from a single charge due to limited storage of energy from an independent power source and a lack of the required service and repair infrastructure. In hybrid and electric vehicles one of the main parameters is the curb weight, which affects energy consumption, vehicle speed, stability, controllability and maneuverability. In this regard, leading car manufacturers use parts with a low specific weight (non-metallic, aluminum alloys, etc.) in the design and also exclude some units from the design. Due to these technical solutions, the vehicle's operating is improved. One of the groups of parameters to be defined when designing a new electric vehicle is the parameters relating to the electric motor. The purpose of the article is determination of the mechanical characteristics of a two-rotor electric motor during magnetic flux control and assessment of the possibility of organizing the drive of the drive wheels of the vehicle. The electric motor has two mechanically independent outputs. For the study, an electrical equivalent diagram has been developed for the given two-rotor electric motor. A simulation model of the equivalent diagram has been built. Simulating the interaction processes of the rotors with the stator made it possible to obtain data for building the mechanical characteristics for each output of the electric motor. Analysis and processing of the mechanical characteristics data of the electric motors showed the conformity and the range of changes in the torque on each of the rotors when changing their slip and revolution, which are required when building algorithms for the operation of electric motor control systems as part of drives for various purposes. Analysis of the simulation results made it possible to assess the possibility of using the considered two-rotor electric motor for the drive of drive wheels in an electric and hybrid wheeled vehicle.
EN
A universal controller for brushless direct current (BLDC) motors was designed in the presented article. The system is controlled from the user console where operating parameters are set by the user. Signals are transmitted by cables to microcontrollers which drive and monitor electric motors. Microprocessors communicate via a data bus. The controller contains the user console module and the motor control module. The user console module generates commands, and motors are controlled and monitored by the control module. Motor control modules operate independently, and each brushless motor has a dedicated control module. Brushless motors can be controlled in bipolar or unipolar mode. The control method is selected by the operator. The user console and motor controllers communicate via the I2C bus.
EN
A universal controller for brushless direct current (BLDC) motors was designed in the presented article. The system is controlled from the user console where operating parameters are set by the user. Signals are transmitted by cables to microcontrollers which control and monitor electric motors. Microprocessors communicate via a data bus. The controller contains the user console module and the motor control module. The user console module generates commands, and motors are controlled and monitored by the control module. Motor control modules operate independently, and each brushless motor has a dedicated control module. Brushless motors can be controlled in bipolar or unipolar mode. The control method is selected by the operator. The user console and motor controllers communicate via the I²C bus.
EN
During our research, we focus on a less researched area in the development of autonomous vehicles. Automotive industry is turning more and more from conventional, internal combustion engine equipped vehicles to the electric cars. Today, electric driving is mostly limited to urban traffic, this is the area where range and refueling limits can be a real alternative. However, it is important to think of those who intend to use vehicle in longer distances, and hybrid technology can provide them a modern, environmentally conscious way of transport. In this article, we describe the method of creating the fuel consumption influencing factors matrix, which is the starting point of our research. We studied relevant researches and based on refueling studies we created the matrix. Based on results of real tests, we determined the factor mix that are the basis of our fuel consumption prediction model. These results will be inputs of planning routes of autonomous vehicles with optimized refueling and fuel consumption.
EN
This work deals with how to improve the energy efficiency, the safety, reliability and the driving comfort by powertrain control in EVs and HEVs from three aspects: 1) How to improve the energy efficiency: Using two cases study in Chapter 2 to present the idea about how to improve the powertrain efficiency of EVs and HEVs. On the other hand, the simulation study shows the current solution in EVs of increasing the driving range by enlarging battery pack size is at the expense of EVs energy efficiency, not to mention the increasing cost and the increasing difficulty of battery management system (BMS); 2) How to improve the safety and reliability by BMS: Battery is the most expensive component both in pure electric and hybrid powertrain. People expect the battery as a green energy solution to liberate society from the dependency of fossil fuel. The reality is that battery has many limitations and battery performance strongly depends on how the batteries are used and also on the environmental conditions. BMS should be designed to keep the battery within a safe operating window and to ensure a long cycle life based on battery limitations and performance characteristics. The popular used Thevenin battery model is analyzed to be linear and to be an improper model for state of charge (SOC) estimation. The nonlinear dynamic battery model (developed by Prof. Szumanwoski in 1980's) is used to develop the Li-ion battery model in numerical way. Finally an improved algorithm for battery SOC estimation is proposed in Chapter 3. 3) How to improve the driving comfort and reliability: a design methodology based on the co-design of scheduling and control is proposed in Chapter 4. Both the simulation and HIL test results show the method can effectively deal with the problem resulted from network-induced delays and network congestion, and can ensure the reliable and dependable control system for electric powertrain system in EVs and HEVs. This work also shows that the powertrain design and its control for EVs and HEVs are highly multidisciplinary, which requires researchers and engineers to have multidisciplinary knowledge or to cooperate closely. When people from different disciplines try to understand basic problems from other disciplines and work together closely, they may easily find the reasons and solutions to the problems. Nowadays EVs and HEVs are just at the beginning of mass production. Some unreliable driving phenomena have reported to appear during EVs operating, engineers haven't found the reason yet. As the number of EVs and HEVs entering into the market increases, more and more technology challenges will appear. For researchers it is also very important to work together with vehicle engineers to find the real reason of unreliable driving phenomena, and to use the research results to resolve the problems. Currently the auto industry is undergoing a radical transformation to phase out conventional vehicles (CVs) powered solely by internal combustion engines (ICEs.) Opportunities and challenges exist both for the auto industry and for auto research institutions. The Author believes that the trend for future vehicle powertrain will be all-electric and hybrid, and the current powertrain technology for EVs and HEVs has many aspects and potential to improve. In next decades, the development of powertrain for EVs and HEVs will focus on how to increase the energy efficiency, improve the safety, reliability and driving comfort, at the same time to make the powertrain more compact.
PL
Tematem artykułu jest zastosowanie alternatywnych paliw w transporcie miejskim oraz wprowadzanie rozwiązań zeroemisyjnych w logistyce miejskiej transportu miejskiego. Zostaną przedstawione uwarunkowania techniczne wykorzystywania konkretnych rozwiązań technologicznych. Wyszczególniono prognozowane kierunki progresji transportu publicznego oraz działania mające na celu osiągnięcie zrównoważonego rozwoju terenów miejskich. Celem artykułu jest zbadanie mocnych i słabych stron poszczególnych środków komunikacji oraz przeanalizowanie szans na ich ekspansję w transporcie miejskim.
EN
The main topic of article is use of alternative fuels in a public transport and implementing zero-emission solutions in urban logistics of public communication. There will be introduced a technical conditioning of technological solutions. There will be highlighted forecasted development’s directions of public transport and activities aimed at sustainable development urban areas. The main goal of paper is research of strengths and faults of particular means of transport and analysis of theirs expansion’s chances in urban communication.
EN
In a regular drive system, with an internal combustion engine, vehicle braking is connected with the unproductive dissipation of kinetic and potential energy accumulated in the mass of the vehicle into the environment. This energy can constitute up to 70% of the energy used to drive a vehicle under urban conditions. Its recovery and reuse is one of the basic advantages of hybrid and electric vehicles. Modern traffic management systems as well as navigation systems should take into account the possibility of the energy recovery in the process of regenerative braking. For this purpose, a model of a regenerative braking process may be helpful, which on the one hand will enable to provide information on how traffic conditions will affect the amount of energy dissipated (wasted) into the atmosphere, on the other hand will help to optimize the route of vehicles with regenerative braking systems. This work contains an analysis of the process of the regenerative braking for the urban traffic conditions registered in Gdańsk. A model was also presented that allows calculating the amount of energy available from the braking process depending on the proposed variables characterizing the vehicle traffic conditions.
PL
Przedmiotem niniejszego artykułu jest analiza drogowej emisji liczby oraz masy cząstek stałych w rzeczywistych warunkach eksploatacji z pojazdu hybrydowego. Co więcej, analizie poddano również warunki pracy badanego pojazdu oraz silnika. W tym celu wykonane zostały badania emisji cząstek stałych i parametrów eksploatacyjnych z lekkiego pojazdu samochodowego z napędem hybrydowym, wyposażonego w 104 kW silnik o objętości skokowej 1,58 dm3. Badania przeprowadzono w rzeczywistych warunkach ruchu, przestrzegając procedury RDE (Real Driving Emission). Test wykonano na obszarze aglomeracji poznańskiej, trasa obejmowała drogi o różnych dopuszczalnych prędkościach. Do badań wykorzystano mobilną aparaturę, należącą do grupy PEMS (Portable Emissions Measurement System), w skład której wchodziły takie urządzenia jak: SEMTECH DS., AVL MSS (Micro Soot Sensor) oraz EEPS 3090 (Engine Exhaust Particle Sizer). Uzyskane wyniki zostały odniesione do wartości dopuszczalnych emisji zgodnie ze standardem EURO 6.
EN
The subject of this article is the analysis of the particle number and mass road emission from a hybrid vehicle in real operating conditions. Additionally, the operating conditions of the tested vehicle and engine were also analyzed. To this end, particulate emissions and performance tests were carried out from a light hybrid vehicle, equipped with a 77 kW engine with a displacement of 1.58 dm3. The tests were conducted in real traffic conditions, following the standard RDE (Real Driving Emission) procedure. The test was performed within the Poznań agglomeration, the route included roads with different maximum speed limits. The research involved the use of mobile measuring equipment, belonging to the PEMS (Portable Emissions Measurement System) group, which included equipment such as: SEMTECH DS, AVL MSS (Micro Soot Sensor) and EEPS 3090 (Engine Exhaust Particle Sizer). The results obtained have been referred to the vehicle exhaust emission limit values in accordance with the Euro 6 norm.
EN
Many large cities in Europe are currently trying to reduce the amount of harmful substances for the residents. Road transport is also an important source of air pollution. One way to reduce pollutant production is to operate more environmentally friendly vehicles. The paper analyses data obtained during practical tests of a hybrid vehicle in urban traffic. The individual components of the exhaust gases are calculated in g/km and they are compared with the values for conventional vehicle propulsion. The data was obtained through a commercially available exhaust gas analyzer and a calculated amount of emissions produced from available data from the engine control unit. The results shown that using of this type of propulsion has its importance in cities with increased air pollution. During urban operation, the hybrid-powered vehicle was powered by an electric engine up to 67.70% (75.40% of the time). As a result of operating such a vehicle in the city, emissions of CO2, HC and NOx are significantly lower.
EN
With the rapid growth of schemes and initiatives to promote e-mobility and numerous measures taken to ensure its quick and effective implementation, there is a wide range of technological and non-technological problems, especially organisational, economic, legal and social in nature, that have to be handled by national and local governments all over the world. This article addresses some of the technological and organisational challenges for electromobility. The key technology-related issues to be coped with are the need for longer ranges of electric vehicles (EVs), shorter charging times and smart power grids (because of a higher demand for electrical energy). Another important problem to be solved urgently is the high battery weight, affecting the vehicle dynamics. Because of the excessive weight of the battery pack, there is a risk of its displacement during a crash, which may jeopardize the safety on the road. The next big concern, also associated with safety, is protection against electrical and fire hazards in the event of a collision. The most important of all the organisational challenges related to EVs is the necessity to create networks of charging stations. Their insufficient number and unsatisfactory distribution are strong barriers hampering the development of e-mobility. The organisational measures also include privileges such as access to bus lanes, already offered in some countries. Finally, there is the need to urgently train a large number of electricians to test and maintain EVs, the need to create a recycling system for used EV batteries, and the need to deal with the organisational aspects of the development of smart power grids.
PL
Jednym z głównych, globalnych czynników, które wpływają na rozwój układów napędowych pojazdów samochodowych, są obecnie trendy w zmianach światowych norm i metodyk badawczych emisji spalin, spowodowane rzeczywistą emisją związków szkodliwych spalin z samochodów w czasie ich eksploatacji i metodami jej ograniczenia. Wprowadzenie nowych norm emisji w krajach Unii Europejskiej określanych jako Euro 6d, zawierających nowe metodyki badawcze WLTP i RDE, jest poważnym wyzwaniem dla przemysłu motoryzacyjnego, ze względu na trudności techniczne oraz czynniki polityczne i socjologiczne. Problem ograniczenia emisji gazów cieplarnianych, szczególnie dwutlenku węgla, emitowanych przez pojazdy drogowe, pozostaje również ważnym czynnikiem, ze względu na wpływ na globalne ocieplenie klimatu. Nowe normy emisji muszą być spełnione w szerokim zakresie warunków otoczenia i w rzeczywistej eksploatacji pojazdu na drodze. Ta problematyka i metody rozwoju układów napędowych pojazdów samochodowych były prezentowane i dyskutowane w czasie 6. Międzynarodowego Sympozjum Ograniczania Emisji z Pojazdów Samochodowych zorganizowanego przez Instytut BOSMAL w Bielsko-Białej. Podczas obrad dokonano syntezy obecnego i przyszłego statusu oraz rozwoju silników spalinowych, napędów hybrydowych i elektrycznych i tego, co najbliższe lata mogą przynieść w tej dziedzinie.
EN
Among the drivers influencing vehicular powertrain development, the field of vehicular exhaust emissions is experiencing wide-ranging and rapid changes. New emissions regulations such as Euro 6d and new test methods (RDE and WLTP) are the main challenges for the automotive industry caused by political, socioeconomic and technical factors. Air quality is very high on the political agenda and pressure remains to limit and reduce greenhouse gas emissions from the road transport sector. In addition to limits becoming increasingly stringent, the list of parameters subject to legal limits are slowly expanding and, most importantly, these limits must be met under a wide range of conditions. A range of strategies are available to overcome these difficulties, which was explored during the 6th International Exhaust Emissions Symposium (IEES) hosted at BOSMAL in June 2018. This paper reports and summarises the topics of the 6th IEES and attempts a synthesis on the current status of the field of IC engines, hybrid powertrains and electric vehicles and what the coming years may hold for the automotive and fuel industries and other allied fields.
EN
Among the drivers influencing vehicular powertrain development, the field of vehicular exhaust emissions is experiencing wideranging and rapid changes. New emissions regulations such as Euro 6d and new test methods (RDE and WLTP) are the main challenges for the automotive industry caused by political, socioeconomic and technical factors. Air quality is very high on the political agenda and pressure remains to limit and reduce greenhouse gas emissions from the road transport sector. In addition to limits becoming increasingly stringent, the list of parameters subject to legal limits are slowly expanding – and, most importantly, these limits must be met under a wide range of conditions. A range of strategies are available to overcome these difficulties, which was explored during the 6th International Exhaust Emissions Symposium (IEES) hosted at BOSMAL in June 2018. This paper reports and summarises the topics of the 6th IEES and attempts a synthesis on the current status of the field of IC engines, hybrid powertrains and electric vehicles and what the coming years may hold for the automotive and fuel industries and other allied fields.
18
Content available remote Comparative analysis of novel electric energy storage technologies for vehicles
EN
The article aims to highlight the desirable and undesirable properties and characteristics of different energy storage technologies. It focuses on the comparison between the different specific battery technologies and supercapacitors currently available on the market, as well as novel technologies that are still in development. Assessment is made for these technologies based on their strong and weak points. Due to the dynamic nature of the developments made in this technology sector, such assessment of beneficial properties allows for an easier consideration of which technologies have the most desirable properties for automotive use. The current trends and technological solutions used in newest electric and hybrid vehicles is discussed, and predictions are made for the future development for batteries and supercapacitors, as well as their possible hybridization. An assessment of the market share of different powertrain technologies is also presented with commentary on how research trends are likely to change the popularity and viability of electric and hybrid vehicles.
PL
W artykule zawarto informacje na temat obecnych kierunków rozwoju technologii służących przechowywaniu energii, z uwzględnieniem możliwości wykorzystania ich w przemyśle samochodowym. Przedstawiono i opisano różne rozwiązania, wykorzystywane obecnie w samochodach osobowych oraz pojazdach transportu publicznego, omówiono ich słabe i mocne strony i możliwe zastosowania. Rozpatrzono możliwości połączenia i hybrydyzacji omawianych technologii oraz potencjalną popularność i opłacalność ich stosowania. Przedstawiono obecne oraz planowane badania naukowe w tej dziedzinie i cele dalszego rozwoju tych technologii w aspekcie możliwych zastosowań w motoryzacji. Artykuł zawiera również omówienie obecnej sytuacji na rynku motoryzacyjnym oraz stopień wykorzystania różnych rozwiązań technologicznych. Ponadto odniesiono się również do współczesnych tendencji rozwoju rynków samochodowych na całym świecie.
PL
W artykule przedstawiono propozycję konstrukcji skutera hybrydowego z napędem 2x2 oraz dynamiczną analizę układu napędowego pod względem mocy dostarczanej na koła pojazdu. Opisano budowę, parametry oraz wszystkie możliwe tryby pracy skutera. W artykule ujawniono problem współpracy silnika spalinowego i elektrycznego w tego typu pojazdach oraz zaproponowano metodykę badań zjawiska mocy krążącej przy napędzie 2x2.
EN
The article represents the suggestion of a hybrid scooter design with the 2x2 drive as well as the dynamic analysis of the power transmission system in terms of the power delivered to the wheels of the vehicle. It includes a description of structure, parameters and all available modes of operation for the scooter. The article reveals the issue of cooperation between the combustion engine and electric engine in that type of vehicles and suggests a methodology of research of circulating power in the 2x2 drive.
PL
Spodziewany rozwój motoryzacji będzie przebiegał w kierunku coraz powszechniejszego wykorzystywania napędów elektrycznych. Przemysł samochodowy i elektrotechniczny oraz sektory transportu i energetyki zaczną ze sobą współdziałać oraz wzajemnie przenikać. Będzie to między innymi efektem ewolucji elektroenergetyki w stronę sieci inteligentnych (Smart Grid). Celem artykułu jest przybliżenie tematyki dotyczącej pojazdów elektrycznych i ich roli w kształtowaniu przyszłych struktur energetycznych, która to tematyka w naszym kraju wydaje się niewystarczająco rozpowszechniana. W pierwszej części artykułu opisane zostały zagadnienia podstawowe, natomiast w kolejnych częściach skupiono się na kwestiach możliwej współpracy pojazdów elektrycznych z siecią elektroenergetyczną oraz rozwojem związanych z tym usług energetycznych.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.