Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 12

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  geochronologia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A reliable stratigraphic subdivision of the Quaternary is extremely important, dependent firstly on primary significance of its deposits in geological investigations and every-day life of human societies. In the Cenozoic, the Quaternary is a period of the same stratigraphic rank as the Palaeogene and the Neogene, but it is much shorter. Traditional stratigraphic schemes of the Quaternary were based mostly on other criteria than of the older periods, because studies of the Quaternary were focused mainly on more easily accessible terrestrial deposits and a decisive role in their formation was played by climate-induced processes. These factors forced a specific approach to define the stratigraphic units and to create the stratigraphic subdivisions of the Quaternary. In the Quaternary investigations in Poland, several categories of stratigraphic classification are used, particularly lithostratigraphy (with pedostratigraphy and cryostratigraphy), morphostratigraphy, biostratigraphy (including palynostratigraphy, malacostratigraphy, teriostratigraphy and anthropostratigraphy), magnetostratigraphy, chronostratigraphy (synchronized with geochronology) and climatostratigraphy (combined with oxygen isotope stratigraphy). The main climatostratigraphic units can be treated as corresponding to the chronostratigraphic ones and it enables correlation in a regional and global scale. Acritical overview of the applied stratigraphic categories and the updated stratigraphic subdivision are presented for Poland.
EN
In the Pieniny Klippen Belt (PKB), the Cretaceous and Paleogene conglomerates and cohesive debrites commonly contain pebbles and blocks of the subvolcanic rocks among other, mainly sedimentary rocks (e.g. multicoloured sandstones, oolitic limestones, dark bivalve coquinas, dolostones, etc.). This detritus was interpreted as derived from the Andrusov Ridge located south of the PKB basin (Birkenmajer, 1988). Age of these subvolcanic rocks, regarded to represent subduction-related igneous activity, was previously constrained by K-Ar whole rock dating as c. 140–90 Ma, leading to suggestion that during Late Jurassic to Early Cretaceous PKB basin developed on oceanic lithosphere, subducted during at the end of Early Cretaceous (Birkenmajer, 1988). Within this study, the geochemical composition, the K-Ar whole rock age and the U-Pb zircon ages of the above mentioned subvolcanic rocks were studied. The pebbles are well rounded. They are represented by granitic and subvolcanic andesitic-type rocks (mainly andesite, basaltic andesite, basaltic trachyandesite, trachyandesite and rhyolitic pebbles, and rare dacite, tephrite, trachybasaltic and basaltic pebbles). Domination of andesitic pebbles, bimodal spectrum of volcanic rocks with high content of SiO2 (rhyolites, dacites) and Na2O and K2O within mafic and transitional ones is observed. Their petrographic character and geochemical analysis of concentration of rare elements with MgO > 2% ratio and La/Yb 4–35, Sc/Ni < 1.5, Sr/Y < 20, Ta/Yb > 0.1, Th/Yb > 1 values, indicate magmatic island arc of active continental margin similar to Andean-type subduction regime. The K-Ar whole rock dating was performed for 17 samples. The obtained ages cover mainly the Early Cretaceous time span, with the most data representing the Barremian-Albian, therefore are coherent with Birkenmajer (1988) results. However, the U-Pb SHRIMP zircon dating reveled different results. Most of the analyzed subvolcanic rock samples (9) give ages in the narrow range of c. 270–266 Ma. The ages are based on concordant data with amount of measured point in a range of 20–30, and are characterized by low error bars, usually lower than ±2 Ma. In addition, one sample of subvolcanic rock gave lower quality results, with a few youngest, partly concordant, zircons grains giving the age of 251.0 Ma ±8.5 Ma. Moreover, one sample of orthogenesis was analyzed, which is regarded to represent crust on which the volcanic arc developed. In this case the U-Pb SHRIMP zircon dating result is 493.9 Ma ±4.1 Ma. We regard these pebbles/blocks to be derived from the Inner Carpathians, assuming therefore lack of the Andrusov Ridge located south of the PKB basin (comp. Plašienka, 2018). The results of K-Ar whole rock dating is representative for intensive diagenetic overprint, rather than age of the rock. The U-Pb data clearly indicate, that subduction-related magmatic arc developed during the middle Permian (Guadalupian). This follows, that the oceanic crust was of the middle Permian or older age, and thus cannot be related to the Jurassic-Early Cretaceous development of the PKB basin. The magmatic arc was presumably connected with southern margin of Laurusia and subduction of oceanic crust of the Paleotethys (proto-Vardar Ocean?).
EN
South-central Vietnam abundantly presents magmatic rocks with larger volumes of Cretaceous granitic rocks. In this study, zircon U–Pb geochronology of granite samples from the Deoca, Ankroet, and Dinhquan complexes in south-central Vietnam are utilized to investigate Cretaceous granitic magmatism. According to U–Pb analysis results, zircon ages of granitic rocks display the Deoca at ~113–92 Ma, the Ankroet at ~103–98 Ma, and the Dinhquan at ~97–113 Ma. The range of ages is narrow from 113 to 92 Ma, with most common ages date at ~100 Ma. Published data and our results display that Cretaceous granitic magmatism was active between ~87–118 Ma and most active at ~100 Ma in south-central Vietnam. Additionally, the Deoca and Dinhquan complexes show inherited ages in Triassic followed by Proterozoic and Carboniferous to Ordovician. The obtained ages indicate that Itype granitic rocks could be derived from melting of basement rocks. Our study suggests that I-type granitic rocks in south-central Vietnam were significantly intruded around 100 Ma.
EN
Since the mid-1950s, when Jerzy Znosko started his huge contribution to the recognition of the crystalline basement of NE Poland, many different studies have followed the planned and implemented drilling projects. The drillings, conducted in the first decade under the leadership of Professor Znosko and under his description of the results, were further worked out by other researchers. Studies concerned petrological, geochemical and miner- alogical aspects. In that fan of methods applied, geochronological data started to be introduced to the bibliography of the area in the early 1960s. Geochronological methods that time mean mostly K-Ar and some Rb-Sr values. These materials are gathered in the paper aiming at its presentation, re-valuation and interpretation in terms of the significance of such data for further development of knowledge.
EN
Status and correlation of Andean ammonite biozones are reviewed. Available calpionellid, nannofossil, and radiolarian data, as well as radioisotopic ages, are also considered, especially when directly related to ammonite zones. There is no attempt to deal with the definition of the Jurassic–Cretaceous limit. Correlation of the V. mendozanum Zone with the Semiforme Zone is ratified, but it is open to question if its lower part should be correlated with the upper part of the Darwini Zone. The Pseudolissoceras zitteli Zone is characterized by an assemblage also recorded from Mexico, Cuba and the Betic Ranges of Spain, indicative of the Semiforme–Fallauxi standard zones. The Aulacosphinctes proximus Zone, which is correlated with the Ponti Standard Zone, appears to be closely related to the overlying Windhauseniceras internispinosum Zone, although its biostratigraphic status needs to be reconsidered. On the basis of ammonites, radiolarians and calpionellids the Windhauseniceras internispinosum Assemblage Zone is approximately equivalent to the Suarites bituberculatum Zone of Mexico, the Paralytohoplites caribbeanus Zone of Cuba and the Simplisphinctes/Microcanthum Zone of the Standard Zonation. The C. alternans Zone could be correlated with the uppermost Microcanthum and “Durangites” zones, although in west central Argentina it could be mostly restricted to levels equivalent to the “Durangites Zone”. The Substeueroceras koeneni Zone ranges into the Occitanica Zone, Subalpina and Privasensis subzones, the A. noduliferum Zone could be equivalent to the Dalmasi Subzone, Occitanica Zone, to lower part of the Boissieri Zone, and the S. damesi Zone could range through the upper part of the Boissieri Zone to the lower part of the Pertransiens Zone. Division of the Substeueroceras koeneni Zone and a precise correlation between the Andean ammonite zones and the international standard require new systematic and stratigraphic studies.
EN
Dr Tadeusz Depciuch (1928–2007), geochemist, mineralogist and economic geologist, longtime employee of the Polish Geological Institute in Warsaw, as the first scientist in Poland who conducted a systematic study on isotopic age of crystalline rocks. In 1966, after preliminary age determinations by Dr Jerzy Borucki, he undertook research of crystalline rocks of the Lower Silesian Block, mainly granites, and subsequently of rocks of the basement of the Polish part of the East European Precambrian Platform penetrated in the 1960s and 1970s, as well as igneous rocks of its cover. He used the K-Ar method, applying its volumetric variety on own-designed equipment. Age determinations allowed identifying the magmatic and metamorphic stages of the development of the crystalline basement evolution, and establishing the stratigraphy. They also played an important role in the research on Variscan plutonism in Lower Silesia. Tadeusz Depciuch participated in prospecting for uranium deposits in the Sudetes, using geochemical methods, and studied the origin of some deposits. In 1974–1984, he worked in Africa (Benin) as a UN expert in the field of geochemistry and economic geology.
PL
Rudonośny suwalski masyw anortozytowy (SAM) razem z anortozytowym masywem Kętrzyna i norytową intruzją Sep, występują w obrębie 200 km długości magmowego terenu zwanego kompleksem mazurskim (NE Polska). Rozciągający się pasmowo w kierunku W-E proterozoiczny kompleks mazurski jest zbudowany z różnorodnych skał o składzie od kwaśnych przez pośrednie do zasadowych. Kwarcowe monzonity i granodioryty są najbardziej rozpowszechnionym typem skał w obrębie facji. Kompleks mazurski przecina kilka kompleksów metamorficznej facji granulitowej i amfibolitowej np. kompleks pomorski, dobrzyński, ciechanowski i mazowiecki. Złoża rud Fe-Ti-(V) w anortozytowym masywie suwalskim zostały odkryte we wczesnych latach 60-tych XX wieku, pod miąższym nadkładem fanerozoicznych skał osadowych w obrębie małych dodatnich anomalii magnetycznych, w rejonie Krzemionki, Udryna, Jeleniewa i Jeziora Okrągłego. Złoża te zostały udokumentowane przy pomocy ok. 100 głębokich otworom wiertniczych, do głębokości 2300 m, a zasoby oszacowane w kat. C1 i C2 na ok. 1,5 mld ton rudy tytanomagnetytowej z wanadem, głównie w polu rudnym Krzemionka i Udryn.
EN
The ore-bearing Suwałki Anorthosite Massif (SAM) together with the Kętrzyn Anorthosite Massif and Sejny norite intrusion are located within 200 km long magmatic terrane called Mazury Complex (NE Poland). The beltiform Proterozoic Mazury Complex is made up of a variety of rocks from felsic and intermidiate to the basic ones. The quartz monzonites and granodiorites are the most widespread rock type within the suite. The belt crosscuts several metamorphic granulite and amphibolite fades units, including Pomorian, Dobrzyń, Ciechanów and Mazovian. Large Fe-Ti-(V) ore deposits of Krzemionka, Udryń, Jeleniewo and Jezioro Okragle have been discovered in early 60-ties, within the small positive magnetic anomalies in the Suwałki Massif and evaluated down to the depth of 2300 m by over 100 boreholes yielding of about 1.5 bilion tons of economic reserves, mostly at Krzemionka and Udryn ore fields.
EN
In 21st century the chronostratigraphy of cave sediments is built on the basis of modern methods: sedimentological analysis, statistical analysis of palaeozoological data, radiometric and luminescence dating and many others. For the time of last 50 000 years the four geochronological units (or appropriate chronostratigraphic units) are usually proposed in Poland in the researches of cave sediments. They are: Interpleniglacial, Upper/Younger Pleniglacial, Late Glacial and Holocene. That scheme has over 150 years of evolution, and its origin was tied with biostratigraphical scheme built by Edouard Lartet in a middle of 19th century. Lartet's stratigraphy for the same period was also made of four units: Cave Bear Epoch, Mammoth and Wooly Rhinoceros Epoch, Reindeer Epoch and Auroch Epoch. Although basing on different methods and using different terminology, the two schemes – from the 19th and from 21st centuries – are similar and correlatabl
EN
The changes in the diversity of specific taxa during certain parts of the geological past (paleobiodiversity dynamics) can, in principle, be established by counting the number of the fossil taxa present (worldwide or in a specific study area) in rocks dated for the time interval under study. Numerous obstacles are present, however, for instance in the form of lacking field data, disappeared collections, ambiguous identifications, temporary ‘disappearence’ of taxa, and dating problems. One major problem is the fact that, particularly in regional studies in some countries, a local, regional or national chronostratigraphic terminology is used rather than the chronostratigraphy recommended by the International Stratigraphic Commision of the International Union of Geological Sciences. This hampers international correlation and makes precise global paleodiversity-dynamics analyses extremely difficult. A reliable insight into the true paleodiversity dynamics requires not only that the various problems are recognized, but also that their consequences are eliminated or, if this is impossible, minimized. This is particularly important if the effects of mass extinctions on fauna and flora are investigated. Each analysis of paleobiodiversity-dynamics analysis of phenomena related to mass extinctions should therefore try to quantify the impact that missing data or inaccuracies of any kind may have on the final results; such an analysis should, in addition, try to find a solution for the major problems, so as to avoid significant inaccuracies of the calculated values. Large electronic databases can help, since about a decade, to diminish possible errors in diversity estimates. Paleobiodiversity should preferably be expressed in the form of values with a certain band with, indicating the inaccuracy, rather than in the form of exact values.
PL
Zmiany w zróżnicowaniu gatunków w pewnych przedziałach czasu przeszłości geologicznej (dynamika paleo-bioróżnorodności) są z zasady ustalane poprzez zliczanie liczby taksonów skamieniałości (na świecie lub na wybranym obszarze) w skałach datowanych na badany interwał czasowy. Tym niemniej procedura ta napotyka wiele przeszkód, np. w postaci braku danych z jakiegoś obszaru, zagubionych kolekcji, niejednoznacznych identyfikacji, czasowego „zaniku” taksonów czy problemów datowania. Jednym z głównych problemów, zwłaszcza w badaniach regionalnych w niektórych krajach, jest stosowanie lokalnej, regionalnej lub krajowej terminologii chronostratygraficznej, a nie chronostratygrafii rekomendowanej przez Międzynarodową Komisję Stratygraficzną przy Międzynarodowej Unii Nauk Geologicznych. Utrudnia to międzynarodowe korelacje i czyni niezwykle trudnym przeprowadzenie precyzyjnej globalnej analizy dynamiki paleo-bioróżnorodności. Wiarygodny wgląd w prawdziwą dynamikę paleo-bioróżnorodności wymaga nie tylko rozpoznania różnych problemów, ale również wyeliminowania ich konsekwencji, a gdy to niemożliwe, zminimalizowania ich. Jest to szczególnie ważne w przypadku, gdy badane są następstwa masowego wymierania fauny i flory. Dlatego każda analiza dynamiki paleo-bioróżnorodności zjawisk związanych z masowym wymieraniem powinna zawierać próbę ilościowego oszacowania wpływu, jakie brakujące dane lub niedokładności jakiegokolwiek rodzaju mogą wywierać na końcowe wnioski. Taka analiza powinna próbować znaleźć rozwiązanie dla głównych problemów, ażeby uniknąć znaczących niedokładności w obliczonych wartościach. Duże elektroniczne bazy danych, dostępne od około 10 lat, mogą pomóc w zmniejszeniu możliwych błędów przy szacowaniu różnorodności. Najlepiej, gdyby paleo-bioróżnorodność była wyrażana w formie wartości w pewnym zakresie, wskazującym na niedokładność, a nie w formie precyzyjnej wartości.
11
Content available Karst processes and time
EN
Karst evolution depends particularly on the time available for process evolution and on the geographical and geological conditions of the exposure of the rock. The longer the time, the higher the hydraulic gradient and the larger the amount of solvent water entering the karst system, the more evolved is the karst. In general, stratigraphic discontinuities directly influence the intensity and extent of karstification. Unconformities influence the stratigraphy of the karst through the time-span that is available for subaerial processes. The end of karstification can also be viewed from various perspectives. The definite end occurs at the moment when the host rock, together with its karst phenomena, has completely been eroded/denuded. Karst forms of individual evolution stages (cycles) can also be destroyed by erosion, denudation and abrasion without the necessity of the destruction of the whole succession of karst rocks. Temporary and/or final interruption of the karstification process can be caused by the “fossilisation” of the existing karst phenomena due to loss of hydrological activity. The shorter the time available for karstification, the greater is the likelihood that karst phenomena are pre-served in the stratigraphic record. While products of short-lived karstification on shallow carbonate platforms can be preserved by deposition during a immediately succeeding sea-level rise, products of more pronounced karstification can be destroyed by various geomorphological processes. The longer the duration of subaerial exposure, the more complex these geomorphological agents are.
PL
Rozwój procesów krasowych jest funkcją czasu oraz geograficznych i geologicznych warunków odsłonięcia skał. Im dłuższy czas ekspozycji skał na czynniki meteorologiczne, większy gradient hydrauliczny, większa ilość wody w układzie krasowym, tym bardziej zaawansowana jest ewolucja krasu. Intensywność i zasięg krasowienia zależą też od niezgodności stratygraficznych, czyli przerw w sedymentacji. Zakończenie rozwoju procesów krasowych rozpatrywać można w różnych kategoriach. Za definitywny koniec należy uznać czas, gdy skały podlegające krasowieniu ulegną całkowitej denudacji/erozji. O wiele częściej bywa, że zniszczeniu ulegają tylko formy krasowe, natomiast niżej położone skały systemu krasowego pozostają zachowane. Okresowe lub całkowite przerwanie procesów krasowych może być spowodowane przez fosylizację systemu krasowego, która zachodzi w efekcie zaniku aktywności hydrologicznej. Taka fosylizacja może być spowodowana przez metamorfizm, transgresję morską, pogrzebanie osadami kontynentalnymi lub skałami wulkanicznymi, w wyniku np. ruchów tektonicznych, zmiany klimatu, itp. Im krótszy jest czas krasowienia, tym większe jest prawdopodobieństwo zachowania śladów procesów krasowych. I tak, produkty krótkookresowej karstyfikacji na płytkich, okresowo wynurzanych platformach węglanowych mogą ulegać łatwemu zachowaniu poprzez pogrzebanie osadami deponowanymi podczas podniesienia poziomu morza. Natomiast efekty długotrwałego krasowienia bywają często niszczone przez późniejsze degradacyjne procesy geomorfologiczne. Charakter tych ostatnich jest tym bardziej skomplikowany, im dłużej trwa subaeralna ekspozycja skrasowiałych skał.
EN
Extensional fractures partly filled with calcite showing the characteristics of flowstone have been observed in the andesite from Jarmuta Mt. The isotopic composition of this calcite indicates low-temperature crystallization conditions and its vadose origin. U-Th dating of the flowstone-like calcite indicates ages of [similar to] 2.5-6.5 ka. The calcite grew on a rough and fresh andesite surface, and hence its age may correspond to the age of the extensional fractures. Rhythmically distributed intergrowths of clay minerals present in the calcite may reflect annual climatic oscillations and show that the calcite grew for at least 500 years. The calcite filling the extensional fractures, like the calcite cementing the loosened cataclastic zones cutting the andesite, does not show any features indicating younger deformations. The origin and geometric features of the fractures show that they could have formed in response to increased strike-slip activity within the deep fault zone known as the Dunajec Fault, which may coincide with the fracture zone between the Upper Silesian and Małopolska blocks.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.