Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  fractional systems
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the paper finite-dimensional semilinear dynamical control systems described by fractional-order state equations with the Hilfer fractional derivative are discussed. The formula for a solution of the considered systems is presented and derived using the Laplace transform. Bounded nonlinear function f depending on a state and controls is used. New sufficient conditions for controllability without constraints are formulated and proved using Rothe’s fixed point theorem and the generalized Darbo fixed point theorem. Moreover, the stability property is used to formulate constrained controllability criteria. An illustrative example is presented to give the reader an idea of the theoretical results obtained. A transient process in an electrical circuit described by a system of Hilfer type fractional differential equations is proposed as a possible application of the study.
EN
In this paper we present and discuss a new class of singular fractional systems in a multidimensional state space described by the Roesser continuous-time models. The necessary and sufficient conditions for the asymptotic stability and admissibility by the use of linear matrix inequalities are established. All the obtained results are simulated by some numerical examples to show the applicability and accuracy of our approach.
EN
In the paper positive fractional continuous-time linear systems are considered. Positive fractional systems without delays and positive fractional systems with a single delay in control are studied. New criteria for approximate and exact controllability of systems without delays as well as a relative controllability criterion of systems with delay are established and proved. Numerical examples are presented for different controllability criteria. A practical application is proposed.
PL
W pracy omówiono wybrane problemy dotyczące modelowania układów czasowych, które mają liczne zastosowania. Szczególnym przypadkiem układu czasowego jest system dynamiczny. W modelach liniowych z macierzą systemu A zwrócono uwagę na zaskakujące własności tych modeli. Własności dynamiczne zależą od widma macierzy systemu A. Przedstawiono odpowiedzi na następujące 3 problemy/pytania: 1. Jeżeli macierz systemu A ma parę sprzężonych wartości własnych, to niesterowany układ przy niezerowych warunkach początkowych generuje przebiegi oscylacyjne. Czy istnieje klasa macierzy A posiadająca pary sprzężonych wartości własnych, a w układzie nie wystąpią oscylacje? 2. Klasyczny układ dynamiczny dx/dt =Ax jest asymptotycznie stabilny wtedy i tylko wtedy, gdy wartości własne macierzy stanu A mają części rzeczywiste ujemne. Niech macierz układu czasowego A ma parę sprzężonych wartości własnych w prawej półpłaszczyźnie zmiennej zespolonej. Czy układ czasowy może być asymptotycznie stabilny? 3. Trzecie pytanie dotyczy realizacji fizycznej. Czy można zbudować oscylacyjny (czyli posiadający parę sprzężonych zespolonych wartości własnych) obwód elektryczny rzędu n=3, którego macierz stanu będzie (cykliczną) macierzą Metzlera M ? Na wszystkie powyższe pytania odpowiedź jest pozytywna. Pierwsze i trzecie pytanie dotyczy tak zwanych układów dodatnich. Pytanie drugie układów niecałkowitego rzędu.
EN
This work describes selected problems regarding time-based process models, which have numerous applications. Dynamic models are a special case of such systems. Some of their surprising features are indicated using linear models with the system matrix A. The dynamic properties depend on the spectrum of the matrix A. The following questions are answered: 1. If the matrix A has a pair of imaginary eigenvalues, the uncontrolled system will generate oscillatory trajectories for initial condition different than zero. Are there any matrices A with imaginary eigenvalues that do not generate oscillatory behaviour of the system? 2. A classic dynamic system dx/dt=Ax is asymptotically stable if and only if the eigenvalues of the matrix A have negative real parts. Let the matrix have a pair of eigenvalues in the right half of the complex plane. Is it possible that the system is asymptotically stable? 3. The third question concerns a physical realization of the model. Is it possible to create an oscillatory (i.e. having a pair of imaginary eigenvalues) electric system of third order, whose state matrix will be a (cyclic) Metzler matrix M? The answer to all these questions is yes. The systems from the first and third one are called positive systems, whereas the second one describes non-integer order systems.
5
Content available Fractional Signals and Systems
EN
The special section in the current volume of the Bulletin of the Polish Academy of Sciences, entitled “Fractional Signals and Systems”, includes selected papers from the FSS17 International Conference, which was held in Łódź, Poland on October 9–11, 2017. The founder of the conference is Manuel Duarte Ortigueira from the New University of Lisbon, Portugal. The FSS17 is yet another in a series of conferences, which had previously taken place in: 1. Caparica, Portugal, 2009 2. Coimbra, Portugal, 2011 3. Ghent, Belgium, 2013 4. Cluj-Napoca, Romania, 2015. The FSS17 conference addressed a broad spectrum of the Fractional Calculus (FC) applications in technical sciences. Main topics included the fractional-order continuous-, and discrete-time linear or non-linear fractional-order control, dynamic system identification via fractional models, fractional order filtering, as well as image processing using fractional methods. The conference’s main organizers included the Institute of Applied Computer Science (Instytut Informatyki Stosowanej Politechniki Łódzkiej), the Lodz University of Technology (Politechnika Łódzka) and the Polish Information Processing Society – Łódź Branch (Polskie Towarzystwo Informatyczne – Oddział Łódzki).
EN
In the recent decades, fractional order systems have been found to be useful in many areas of physics and engineering. Hence, their efficient and accurate analog and digital simulations and numerical calculations have become very important especially in the fields of fractional control, fractional signal processing and fractional system identification. In this article, new analog and digital simulations and numerical calculations perspectives of fractional systems are considered. The main feature of this work is the introduction of an adjustable fractional order structure of the fractional integrator to facilitate and improve the simulations of the fractional order systems as well as the numerical resolution of the linear fractional order differential equations. First, the basic ideas of the proposed adjustable fractional order structure of the fractional integrator are presented. Then, the analog and digital simulations techniques of the fractional order systems and the numerical resolution of the linear fractional order differential equation are exposed. Illustrative examples of each step of this work are presented to show the effectiveness and the efficiency of the proposed fractional order systems analog and digital simulations and implementations techniques
EN
This paper presents new results of modelling of linear open-loop stable systems by means of discrete-time finite fractional orthonormal basis functions, in particular the Laguerre functions. New stability conditions are offered and useful modification of the finite fractional derivative, called the normalized finite fractional derivative, is introduced. Simulation examples illustrate the usefulness of the new modelling methodology.
PL
W artykule przedstawiono nową koncepcję modelowania stabilnych systemów dynamicznych z zastosowaniem funkcji bazy ortonormalnej i równań różnicowych niecałkowitego rzędu. Przypomniano klasyczne równanie różnicowe niecałkowitego rzędu (Grunwalda-Letnikowa). Następnie wprowadzono tzw. skończone równanie różnicowe niecałkowitego rzędu oraz zaproponowano jego modyfikację nazwaną znormalizowanym skończonym równaniem różnicowym niecałkowitego rzędu. Ponadto przedstawiono opis modeli bazujących na funkcjach bazy ortonormalnej opartych zarówno na skończonym równaniu różnicowym niecałkowitego rzędu, jak również znormalizowanym skończonym równaniu różnicowym niecałkowitego rzędu i przedstawiono warunki stabilności tych modeli. Przykłady symulacyjne potwierdzają wysoką skuteczność prezentowanej metodologii w sensie niskich błędów predykcji generowanych przez wprowadzone modele. Ponadto w oparciu o przykłady symulacyjne zaprezentowano pewne zasady doboru parametrów i K wchodzących w skład modeli.
PL
W pracy podano komputerowe metody (zwane metodami funkcji testujących) badania odpornej stabilności ciągłych liniowych układów dynamicznych, których wielomian charakterystyczny jest wielomianem ułamkowego stopnia współmiernego o współczynnikach liniowo zależnych od niepewnych parametrów. Proponowane metody są uogólnieniem metod znanych z teorii odpornej stabilności układów naturalnego rzędu. Rozważania zilustrowano przykładem liczbowym.
EN
The paper gives simple computational methods (called the testing function methods) for robust stability checking of continuous-time linear fractional systems with linearly dependent coefficient perturbations in characteristic polynomial of fractional commensurate order. The proposed methods are generalizations of the method known from the robust stability theory of natural order systems. The considerations are illustrated by a numerical example.
EN
A new class of fractional 2D linear discrete-time systems is introduced. The fractional difference definition is applied to each dimension of a 2D Roesser model. Solutions of these systems are derived using a 2D Z-transform. The classical Cayley-Hamilton theorem is extended to 2D fractional systems described by the Roesser model. Necessary and sufficient conditions for the positivity and stabilization by the state-feedback of fractional 2D linear systems are established. A procedure for the computation of a gain matrix is proposed and illustrated by a numerical example.
10
Content available remote Fractional positive continuous-time linear systems and their reachability
EN
A new class of fractional linear continuous-time linear systems described by state equations is introduced. The solution to the state equations is derived using the Laplace transform. Necessary and sufficient conditions are established for the internal and external positivity of fractional systems. Sufficient conditions are given for the reachability of fractional positive systems.
EN
This paper provides an optimal approximation of the fundamental linear fractional order transfer function using a distribution of the relaxation time function. Simple methods, useful in systems and control theories, which can be used to approximate the irrational transfer function of a class of fractional systems for a given frequency band by a rational function are presented. The optimal parameters of the approximated model are obtained by minimizing simultaneously the gain and the phase error between the irrational transfer function and its rational approximation. A simple analog circuit which can serve as a fundamental analog fractional system is obtained. Illustrative examples are presented to show the quality and usefulness of the approximation method.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.