Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 18

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dye-sensitized solar cell
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This work aimed to study the natural dye extracted from Indonesian wild plants (Rivina humilis L.) using different solvents. The natural dye was extracted using the maceration method. Three different solvents, namely, aquades, acetone, and ethanol 96%, were used to extract natural dye from Rivina humilis L fruit. The absorbance spectra of the extracted dye were recorded using Ultraviolet-Visible (UV-Vis) spectroscopy. The different spectra of betalain pigment revealed the dye extract’s dependence on the solvent. The functional groups of the extracted dye were analyzed using Fourier transform infrared (FTIR) spectroscopy. The adherence of carbonyl and hydroxyl groups from FTIR spectra indicated that this dye could anchor to a semiconducting material, e.g., TiO2, which was commonly used in dye-sensitized solar cells (DSSC). The electrochemical properties of the extracted pigments were studied through higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy levels. Based on the results, the best performance to construct DSSC was achieved by natural dye adsorption with aquades solvent.
EN
Electricity storage is one of the best-known methods of balancing the energy supply and demand at a given moment. The article presents an innovative solution for the construction of an electric energy storage device obtained from an innovative photovoltaic panel made of new dye-based photovoltaic modules and newly developed supercapacitors – which can be used as an emergency power source. In the paper, for the first time, we focused on the successful paring of new dye-sensitized solar cell (DSSC) with novel supercapacitors. In the first step, a microprocessor stand was constructed using Artificial Intelligence algorithms to control the parameters of the environment, as well as the solar charger composed of six DSSC cells with the dimensions of 100_100 mm and 126 CR2032 coin cells with a total capacitance of 60 F containing redox-active aqueous electrolyte. It was proven that the solar charger store enough energy to power, i.e. SOS transmitter or igniters, using a 5 V signal.
EN
Dye-Sensitized Solar Cells (DSSCs) have been successfully fabricated with a low annealing temperature (100 °C to 500 °C) approach to the anatase TiO2 photoanode deposited by a screen-printing method. In this paper, the surface morphology and structure of the TiO2 thin films were studied using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) and Raman Spectroscope while I-V characteristic was used for the electrical properties. Sample with an annealing temperature of 300 °C displays a good feature in terms of porosity and enhanced agglomerated surface.
PL
Ogniwa słoneczne uczulone barwnikiem (DSSC) zostały z powodzeniem wyprodukowane przy niskiej temperaturze wyżarzania (100 °C do 500 °C) z fotokomórką anatazu TiO2 osadzaną metodą sitodruku. W artykule zbadano morfologię powierzchni i strukturę cienkich warstw TiO2 przy użyciu skaningowego mikroskopu elektronowego (SEM), dyfrakcji promieniowania rentgenowskiego (XRD) i spektroskopu Ramana, natomiast dla właściwości elektrycznych wykorzystano charakterystykę I-V. Próbka o temperaturze wyżarzania 300 °C wykazuje dobrą cechę pod względem porowatości i zwiększonej powierzchni zaglomerowanej.
EN
The increasing concern for worldwide energy production is the result of global industrialization and decreasing energy resources. Despite the cost factor, solar energy continues to become more popular due to its long-term nature as a resource and growing conversion efficiency. A dye-sensitized solar cell converts visible light into electricity. The efficient use of dye as a sensitizer is the critical factor in enhancing the performance of the dye-sensitized solar cell. Natural dyes are found in abundance in leaves, flower petals, roots, and other natural resources. Due to the advantages of natural dyes such as cost-effectiveness, the simpler extraction process, and being environmentally friendly, etc., researchers are working extensively to replace synthetic dyes with natural ones. This paper highlights the various types of natural dyes and their effect on the efficiency of the dye-sensitized solar cell.
5
Content available remote Natural flavonoids as potential photosensitizers for dye-sensitized solar cells
EN
Natural flavonoids quercetin, morin, fisetin and luteolin were studied as potential photosensitizers for dye-sensitized solar cells (DSSC). Spectroscopic methods were used to investigate the formation of dye/TiO2 nanoparticles assemblies and the development of their absorption spectra. The results show that the flavonoids adsorb well on TiO2 nanoparticles and this process causes the shift of absorption spectra from the near UV into the visible range of solar light. The mode of binding of the dye molecules on TiO2 surface is analyzed by comparison of spectral absorption properties and with the use of structural differences introduced by fisetin and luteolin for discrimination between several possibilities.
EN
The dye-sensitized solar cells made of NiO@ZnO nanoparticles were synthesized by a novel Pechini route using different NiO molar concentration ratios. The thermal, structural morphological, optical and electrical properties of the prepared samples were investigated using thermal gravimetric analysis and differential scanning calorimetery (TGA/DSC), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), FT-IR and Raman spectroscopy, UV-diffuse reflectance (UV-DRS), photoluminescence (PL) and current-voltage (I-V) measurements. The success of doping process was confirmed by the XRD patterns, which revealed the existence of new peak at 43.2° corresponding to secondary phase NiO. UV spectra exhibited red shifts in NiO doped ZnO NCs and PL spectra showed strong emission band at 355 nm. The doping of ZnO with NiO was intended to enhance the surface defects of ZnO. The current-voltage measurements showed an improvement of the short circuit photocurrent (Jsc) and fill factor (FF) and a decrease in the open circuit voltage (VOC) for dye-sensitized solar cel (DSSC) based on NiO–ZnO NCs. A clear enhancement in efficiency of DSSC from 1.26±0.10 % for pure ZnO to 3.01±0.25 % for NiO–ZnO NCs at the optimum doping with 1.5 mol% of NiO to ZnO (ZN1.5) was observed. The obtained material can be a suitable candidate for photovoltaic applications.
EN
Clean and cheap device, namely dye-sensitized solar cells (DSSCs) were fabricated using a natural dye extracted from Sambucus ebulus. We prepared five sample solutions with various pH in the extraction process to improve power conversion efficiency. The UV-visible absorption investigation of sample solutions and on photoanode show the dyes from J-type aggregation on a photoanode substrate. Redox proper-ties of all sample solutions certify thermodynamically a charge transfer from excited state to conduction band TiO2. The optical properties of various dye solutions were investigated and results showed dark-ness and bluish tint effect of dye solutions extracted in basic environment rather than those extracted in acidic condition. Moreover, in comparison to the basic condition, the dye solutions extracted in acidic environment were more saturated and colorimetrically less different from that one which extracted in neutral condition. Photophysical and photoelectrochemical performance of natural extraction dyes have been studied in dye-sensitized solar cell devices. The results show the rather high conversion efficiency of 0.57%, 1.15%, 1.02%, 0.35% and 0.15% of each individual dye extraction, respectively.
EN
A novel methodology was implemented in the present study to concurrently control power conversion efficiency (η) and durability (D) of co-sensitized dye solar cells. Applying response surface methodology (RSM) and Desirability Function (DF), the main influential assembling (dye volume ratio and anti-aggregation agent concentration) and operational (performance temperature) parameters were systematically changed to probe their main and interactive effects on the η and D responses. Individual optimization based on RSM elucidated that D can be solely controlled by changing the ratio of vat-based organic photosensitizers, whereas η takes both effects of dye volume ratio and anti-aggregation concentration into account. Among the studied factors, the performance temperature played the most vital role in η and D regulation. In particular, however, multi-objective optimization by DF explored the degree to which one should be careful about manipulation of assembling and operational parameters in the way maximization of performance of a co-sensitized dye solar cell.
EN
A dye-sensitized solar cell (DSSC) was assembled using a dye 4-(3-chloro-1, 4-dioxo-1, 4-dihydronaphthalen-2-ylamino) benzoic acid with ZnO as a photo anode. It was synthesized using 2, 3-dichloro 1, 4-naphthoquinone and p-amino benzoic acid. The spectral features of the dye were analyzed in ethanol using experimental and computational methods. The theoretical investigations revealed that the synthesized dye may act as a sensitizer in DSSCs. The photo electrochemical performance was tested under direct sunlight using a sandwich type DSSC. The photovoltaic data of the dye adsorbed on ZnO films indicated the power conversion efficiency of 1.07 % under sunlight with a light intensity of 39 mW·cm-2.
EN
The paper presents the results of the structure investigation of a counter electrode in dye-sensitized solar cells using the carbon nanomaterials. Solar cells were fabricated on the glass with transparent conductive oxide TCO (10Ω/sq). Nanocrystalline titania based photoanode was prepared by spreading TiO2 paste onto TCO glass and subsequently annealed at 450°C for at least 30 min to convert anatase phase and make an interparticle network. After then the nanostructured titania films was immersed into an ethanolic solution of the ruthenium-based dye. As a counter electrodes of dye-sensitized solar cells composite films of carbon nanomaterials and polystyrene sulfonate doped poly (3,4-ethylenedioxythiophene) PEDOT-PSS (Sigma-Aldrich) were deposited onto TCO substrates. Because carbon nanoelements and titanium oxide consist of nano-metric structural units to determine the properties of the cells and their parameters several surface sensitive techniques and methods, i.e. Raman spectroscopy, Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HRTEM), and electric properties of conductive layers were used.
EN
In this study titanium dioxide nanopowder has been manufactured and examined. Nanocrystalline TiO2 powder has been obtained by hydrolysis and peptization of a solution of titanium isopropoxide and isopropanol. Subsequently, produced powder has been subjected to structural analysis by using a transmission electron microscope, X-ray diffractometer, and Raman spectrometer. For comparison purposes, a commercially available titanium dioxide powder (i.e. titanium white) was also used. Thin layers have been made from this powder and further have been examined by using a UV/VIS spectrometer. Completed research shows the nanocrystalline structure of obtained layers and their good properties such as absorbance at the range of wavelength equal 200 - 1000 nm.
EN
Purpose of the paper: The aim of the research is to investigate the influence of the structure and chemical composition of the surface layers containing reduced oxide graphene on the properties of dye-sensitized solar cells, and to determine the correlation between the morphology and physicochemical properties of reduced graphene oxide and the electrical and optical properties of dye-sensitized solar cells, which will result in the desired effects reducing production costs and increasing the efficiency of dye cells. Design/methodology/approach: Complete manufacturing technology of dye-sensitized solar cells included the selection of the conditions of the thermal reduction of graphene oxide, the development of manufacturing technology of photoanode with and without reduced graphene oxide, the development of manufacturing technologies of counter electrodes with the reduced graphene oxide and the production of dye-sensitized solar cells by combining photoanode and counter electrode and filling the space between them by the electrolyte. Findings: A reduced graphene oxide layers applied to a glass substrate with transparent conductive oxide, used as a counter electrode and photoanode effect on reducing the degree of recombination and increasing electrochemical properties, which makes them important factors in increasing the efficiency of photovoltaic cells and reduce their manufacturing costs. Research limitations/implications: Dye-sensitized solar cells research develop in the direction to increase their efficiency and reduce manufacturing costs, among others, by modifying the chemical composition and structure of the main components: photoanode and counter electrode. Using one of the most expensive materials in the world - a platinum as a catalytic layer causes a significant increase in production costs. For this reason, it is important to search for new materials that can replace the expensive platinum. Practical implications: Developed in this work producing technology of photoanode and the counter electrode containing reduced graphene oxide is an attractive alternative to dye-sensitized solar cell by reducing the manufacturing cost by eliminating costly layer of platinum while maintaining a relatively high efficiency, high transmittance and low resistance of charge transfer at the interlayer counter electrode/electrolyte. Originality/value: In the paper, the reduced graphene oxide was applied as both photoanode and the counter electrode in dye-sensitized solar cells.
EN
SrAl2O4:Eu2+, Dy3+ phosphor was synthesized by chemical solution route to use as a dopant in TiO2 layer employed as a photoelectrode for down conversion of ultraviolet and near-ultraviolet to visible and near-infrared light in a dye-sensitized solar cell. Nano-crystalline structure of the SrAl2O4:Eu2+, Dy3+powder was confirmed by X-ray diffraction analysis and field emission scanning electron microscopy. Monitored at 520 nm, SrAl2O4:Eu2+, Dy3+ phosphor showed emission peaks at 460 to 610 nm due to 4f6 → 4f7 transitions of Eu2+ ions. For the study, SrAl2O4:Eu2+, Dy3+ phosphor-doped TiO2 layer was deposited on fluorine-doped tin oxide coated glass by electrostatic spray deposition. The short circuit current, open circuit voltage, fill factor, and conversion efficiency of the cells were measured. Experimental results revealed that the device efficiency for the SrAl2O4:Eu2+, Dy3+ phosphor-doped TiO2 layer increased to 7.20 %, whereas that of the pure-TiO2 photoelectrode was 4.13 %.
EN
In this work, TiO2 nanoparticles and submicron-sized granules were synthesized by a hydrothermal method and spray pyrolysis, respectively. Submicron-sized granules were dispersed into the nano-sized TiO2 layer to improve the light conversion efficiency. Granules showed better light scattering, but lower in terms of the dye-loading quantity and recombination resistance compared with nanoparticles. Consequently, the nano-sized TiO2 layer had higher cell efficiency than the granulized TiO2 layer. When dispersed granules into the nanoparticle layer, the light scattering was enhanced without the loss of dye-loading quantities. The dispersion of granulized TiO2 led to increase the cell efficiency up to 6.51%, which was about 5.2 % higher than that of the electrode consisting of only TiO2 nanoparticles. Finally, the optimal hydrothermal temperature and dispersing quantity of granules were found to be 200°C and 20 wt%, respectively.
EN
A novel zinc porphyrin (5,10,15-tri-dodecoxyphenyl-20-(4-hydroxyphenyl-azo-benzenyl)-porphyrinatozinc (tdhab-ZnP)) with benzenyl-azo-phenolic group, able to adsorb on the nanocrystalline-TiO2 film, has been synthesized. We constructed a dye-sensitized solar cell based on the nanocrystalline-TiO2 hierarchical structure film, with a power conversion efficiency of 4.15 % and a high current density of 14 mA/cm2 under AM 1.5 irradiation. UV-Vis absorption spectra measurements indicated that the tdhab-ZnP molecules formed a charge transfer complex with TiO2 nanoparticles (NPs) through the phenolic group. Cyclic voltammetry measurement showed that the charge separation resulting from the tdhab-ZnP excited singlet state to the conduction band (CB) of TiO2 and charge shifting from the I−/I−3 couple to the porphyrin radical cation were thermodynamically feasible.
PL
Praca przedstawia projekt instalacji fotowoltaicznej, w skład której wchodzą technologie barwnikowych ogniw organicznych DSSC oraz krzemowe, wysokowydajne ogniwa typu back-contact. Oba rozwiązania opisano i scharakteryzowano ich zalety oraz wady. Projekt swym zasięgiem obejmuje południowo-wschodnią część budynku „K” Politechniki Rzeszowskiej W pracy przedstawiono również krótką charakterystykę warunków solarnych Rzeszowa na podstawie danych meteorologicznych ze stacji Rzeszów-Jasionka. Korzystając z oprogramowania PVSOL przeprowadzono symulację systemu pod kątem potencjalnych zysków energii, które porównano z aktualnymi potrzebami energetycznymi budynku.
EN
The paper presents the design of photovoltaic installation, which covers the south-eastern part of the building "K" of Rzeszów University of Technology. In this building there are rooms of the Department of Physics, being the initiator of the project. This work describes the Polish solar conditions, in particular Subcarpathian (Fig. 1) [3, 4, 11]. In the following characterizes key assumptions the design. There is described the principle of operation of photovoltaic technologies used with the advantages and disadvantages of each of them [15]. The basic parameters of the cells used in the project, together with the Energy Management System are characterized [13]. The paper presents design solutions fixing installations and drawings showing the appearance of the facade covered by installing a PV system (Figs. 4-9). Using the software PVSOL Valentin, the authors performed a simulation of the designed system for potential energy yields and estimated the theoretical efficiency of the installation for the parameters assumed in the project. The results are presented in the form of graphs and compared with the current energy needs of the building (Figs.10-11). Based on the obtained results, it was found that the designed system would only cover about 10% of the building electricity.
17
Content available remote Perspektywy zastosowań barwnikowych ogniw słonecznych w Polsce
PL
W referacie przedstawiono budowę, sposób działania i zalety barwnikowych ogniw słonecznych. Omówione zostały możliwości zastosowania tego typu ogniw w Polsce z uwzględnieniem oszacowania kosztów.
EN
Dye-sensitized solar cells (DSSC) provide a promising alternative concept to conventional PV devices. This paper presents structure, operation and advantages of DSSC as well as the dependence of their performance on the temperature. The estimated cost of DSSC application in Poland is also discussed.
EN
Homocentrically grown SnO2 nanorods were synthesized by a hydrothermal method, whose diameter and length are around 20 nm and 100-200 nm, respectively. The photovoltaic properties of dye-sensitized SnO and MgO-treated SnO2 films were investigated. A light-to-electricity conversion yield of 0.8% was achieved by applying the nanorods as a thin film layer for the dye-sensitized solar cells. Treatment with MgO on SnO2 surface improves the photovoltage, fill factor and cell efficiency owing to preventing a recombination of the electrons injected into SnO with acceptors in the electrolyte.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.