Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  copper droplets
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The copper droplets contained in the post-processing liquid slag are subjected to the treatment by the complex reagent. The complex reagent has been recently elaborated and patented in frame of the Grant No. PBS3/A5/45/2015. In particular, the complex reagent is dedicated to the post-processing slags coming from the Smelter and Refinery Plant, Głogów, as a product of the direct-to-blister technology performed in the flash furnace. The recently patented complex reagent effectively assists not only in agglomeration, and coagulation but also in the deposition of the copper droplets at the bottom of crucible / furnace as well. The treatment of the post-processing slags by the complex reagent was performed in the BOLMET S.A. Company as in the industrial conditions which were similar to those usually applied in the KGHM – Polish Copper (Smelter and Refinery Plant, Głogów). The competition between buoyancy force and gravity is studied from the viewpoint of the required deposition of coagulated copper droplets. The applied complex reagent improves sufficiently the surface free energy of the copper droplets. In the result, the mechanical equilibrium between coagulated copper droplets and surrounding liquid slag is properly modified. Finally, sufficiently large copper droplets are subjected to a settlement on the crucible / furnace bottom according to the requirements.
EN
The studied copper droplets suspension in the liquid slag came from the direct-to-blister technology developed in the KGHM - Polska Miedź S.A. plants. A treatment by the stimulators and reagents was performed in the conditions delivered / ensured by the BOLMET S.A., Wiechlice. These conditions were similar to those usually applied to the industrial process. Particularly, this treatment was similar, to some extent, to that known for the electric arc-furnace technology employed in the Smelter and Refinery Plant, Głogów. An effectiveness of the newly developed and patented complex chemical/reagent for the copper removal from slag was tested during the treatment. The effect of the liquid slag stirring on the copper droplets self-cleaning was also analysed. The performed test confirmed the effectiveness of the studied complex reagent in agglomeration, coagulation and sedimentation of the copper droplets.
EN
The suspension of the copper droplets in the post-processing slag taken directly from the KGHM-Polska Miedź S.A. Factory (from the direct-to-blister technology as performed in the flash furnace) was subjected to the special treatment with the use of the one of the typical industrial reagent and with the complex reagent newly patented by the authors. This treatment was performed in the BOLMET S.A. Company in the semi-industrial conditions. The result of the CaCO3, and Na2CO3 chemicals influence on the coagulation and subsequent sedimentation of copper droplets on the crucible bottom were subjected to comparison with the sedimentation forced by the mentioned complex reagent. The industrial chemicals promoted the agglomeration of copper droplets but the coagulation was arrested / blocked by the formation of the lead envelope. Therefore, buoyancy force forced the motion of the partially coagulated copper droplets towards the liquid slag surface rather than sedimentation on the crucible bottom. On the other hand, the complex reagent was able to influence the mechanical equilibrium between copper droplets and some particles of the liquid slag as well as improve the slag viscosity. Finally, the copper droplets coagulated successfully and generally, were subjected to a settlement on the crucible bottom as desired / requested.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.