Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 28

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  castings defects
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The formation process of one of the most common casting defects, a shrinkage depression concerned to shrinkage cavity, was studied. The methodology, device and the experimental set up were developed to study the shrinkage cavity growth. The kinetics of vacuum formation in the cavity of the spherical casting of Al-Si-Mg alloy at its solidification in the sand-and-clay form was investigated. The data were analysed taking in mind the temperature variation in the centre of crystallizing casting. The causes of the shrinkage depression in castings were clarified. It was determined that atmospheric pressure leads to the retraction and curvature of metal layer on the surface of the casting with lower strength below which the shrinkage cavity is formed. To avoid such defects it was recommended to use the external or internal chills, feeders and other known technological methods. Deep shrinkage cavities inside the castings could be removed with an air flow through a thin tubular needle of austenitic steels for medical injections.
EN
The production of high pressure die casts also brings difficulties regarding the processing of the waste material. It is mainly formed by runners, overflows and other foundry supplements used and, in the case of machines using the cold chamber, also the remainder from this chamber. As this material is often returned to the production process, we refer to it as return material. In the production process, it is therefore essential to deal with the proportion issue of return material against primary material that can be added to the melt to maintain the required cast properties. The submitted article monitors the quality properties of the alloy, selected mechanical properties of casts and porosity depending on the proportion of the return material in the melt. At the same time, the material savings are evaluated with regards to the amount of waste and the economic burden of the foundries. To monitor the above-mentioned factors, series of casts were produced from the seven melting process variants with a variable ratio of return to the primary material. The proportion ratio of return material in the primary alloy was adjusted from 100% of the primary alloy to 100% of the return material in the melting process. It has been proven that with the increasing proportion of the return material, the chemical composition of the melt changes, the mechanical properties of the alloy decrease and the porosity of the casts increases. Based on the results of the tests and analyzes, the optimal ratio of return and primary material in the melting process has been determined. Considering the prescribed quality of the alloy and mechanical properties, concerning the economic indicator of the savings, the ratio is set at 70:30 [%] in favor of the primary material.
EN
Nowadays, the best castings’ manufacturers have to meet very demanding requirements and specifications applicable to mechanical properties and other characteristics. To fulfill those requirements, more and more sophisticated methods are being used to analyze the internal quality of castings. In many cases, the commonly used Non-Destructive Methods, like X-ray or ultrasonic testing, are not enough to ensure precise and unequivocal evaluation. Especially, when the properties of the casting only slightly fail the specification and the reasons for such failures are very subtle, thus difficult to find without the modern techniques. The paper presents some aspects of such an approach with the use of Scanning Electron Microscopy (SEM) to analyze internal defects that can critically decrease the performance of castings. The paper presents the so-called bifilm defects in ductile and chromium cast iron, near-surface corrosion caused by sulfur, micro-shrinkage located under the risers, lustrous carbon precipitates, and other microstructure features. The method used to find them, the results of their analysis, and the possible causes of the defects are presented. The conclusions prove the SEM is now a powerful tool not only for scientists but it is more and more often present in the R&D departments of the foundries.
EN
The purpose of this paper was to develop a methodology for diagnosing the causes of die-casting defects based on advanced modelling, to correctly diagnose and identify process parameters that have a significant impact on product defect generation, optimize the process parameters and rise the products’ quality, thereby improving the manufacturing process efficiency. The industrial data used for modelling came from foundry being a leading manufacturer of the high-pressure die-casting production process of aluminum cylinder blocks for the world's leading automotive brands. The paper presents some aspects related to data analytics in the era of Industry 4.0. and Smart Factory concepts. The methodology includes computation tools for advanced data analysis and modelling, such as ANOVA (analysis of variance), ANN (artificial neural networks) both applied on the Statistica platform, then gradient and evolutionary optimization methods applied in MS Excel program’s Solver add-in. The main features of the presented methodology are explained and presented in tables and illustrated with appropriate graphs. All opportunities and risks of implementing data-driven modelling systems in high-pressure die-casting processes have been considered.
5
EN
The objective of this work is to gain a deeper understanding of the separation effects and particle movement during filtration of non-metallic inclusions in aluminum casting on a macroscopic level. To understand particle movement, complex simulations are performed using Flow 3D. One focus is the influence of the filter position in the casting system with regard to filtration efficiency. For this purpose, a real filter geometry is scanned with computed tomography (CT) and integrated into the simulation as an STL file. This allows the filtration processes of particles to be represented as realistically as possible. The models provide a look inside the casting system and the flow conditions before, in, and after the filter, which cannot be mapped in real casting tests. In the second part of this work, the casting models used in the simulation are replicated and cast in real casting trials. In order to gain further knowledge about filtration and particle movement, non-metallic particles are added to the melt and then separated by a filter. These particles are then detected in the filter by metallographic analysis. The numerical simulations of particle movement in an aluminum melt during filtration, give predictions in reasonable agreement with experimental measurements.
EN
The mathematical model and numerical simulations of the solidification of a cylindrical casting, which take into account the process of the mould cavity filling by liquid metal and the feeding of the casting through the conical riser during its solidification, are proposed in the paper. The interdependence of thermal and flow phenomena were taken into account because they have an essential influence on solidification process. The effect of the pouring temperature and pouring velocity of the metal on the solidification kinetics of the casting was determined. In order to obtain the casting without shrinkage defects, an appropriate selection of these parameters was tried, which is important for foundry practice. The velocity fields have been obtained from the solution of Navier-Stokes equations and continuity equation, while temperature fields from solving the equation of heat conductivity containing the convection term. In the solidification modelling the changes in thermo-physical parameters as a function of temperature were considered. The finite element method (FEM) was used to solve the problem.
EN
The Comparative Analysis of the Inclusion Removal Efficiency of Different Fluxes
EN
A significant development of the foundry industry contributes to the creation of high reliability and operational strength castings so that they meet specific standards in accordance with customers’ needs. This technology, however, is inseparably connected with casting defects in finished products. Cast products are subject to various defects which are considered acceptable or not, which is conditioned by the alloy chemical composition and strength characteristics, that is, generally – qualities to be agreed between the foundry and the customer. It is the latter that led the authors to research on designing a tool enabling the most reliable possible assessment of the emerging casting defects, which after proper consultations can be repaired and the casting – sold. The paper presents an original tool named the Open Atlas of Defects (OAD), developed for the last few years to support the evaluation of cast iron defects using Non-Destructive Testing (NDT) casting defects analysis tools (DCC card – Demerit Control Chart, Pareto-Lorenz analysis and ABC analysis). The OAD tool structure was presented as an integral part of the original system module for acquisition and data mining (A&DM) in conjunction with the possibilities of using selected tools for defect analysis support on the example of cast iron casting.
EN
Presented paper shows the mathematical and numerical approaches for modelling of binary alloy solidification solved by the Finite Element Method (FEM). The phenomenon of shrinkage cavities formation process is included in the numerical model. Multiple macroscopic cavities can be modelled within the single casting volume. Solid, liquid and gaseous phases with different material properties are taken into account during solidification process. Mathematical model uses the differential equation of heat diffusion. Modification of specific heat is used to describe the heat releasing during liquid-solid phase change. Numerical procedure of shrinkage cavities evolution is based on the recognition of non-connected liquid volumes and local shrinkage computation in the each of them. The recognition is done by the selection of sets of interconnected nodes containing liquid phase in the finite element mesh. Original computer program was developed to perform calculation process. Obtained results of temperature and shrinkage cavities distributions are presented and discussed in details.
EN
The paper indicates the significance of the problem of foundry processes parameters stability supervision and assessment. The parameters, which can be effectively tracked and analysed using dedicated computer systems for data acquisition and exploration (Acquisition and Data Mining systems, A&D systems) were pointed out. The state of research and methods of solving production problems with the help of computational intelligence systems (Computational Intelligence, CI) were characterised. The research part shows capabilities of an original A&DM system in the aspect of selected analyses of recorded data for cast defects (effect) forecast on the example of a chosen iron foundry. Implementation tests and analyses were performed based on selected assortments for grey and nodular cast iron grades (castings with 50 kg maximum weight, casting on automatic moulding lines for disposable green sand moulds). Validation tests results, applied methods and algorithms (the original system’s operation in real production conditions) confirmed the effectiveness of the assumptions and application of the methods described. Usability, as well as benefits of using A&DM systems in foundries are measurable and lead to stabilisation of production conditions in particular sections included in the area of use of these systems, and as a result to improvement of casting quality and reduction of defect number.
EN
The paper includes validation studies of the flow module of the NovaFlow&Solid simulation code. Experiments of ductile iron and gray iron casting in a spiral test of castability were carried out. Casting experiments were then carried out in industrial conditions in the Ferrex Foundry in Poznań and the results are the castability spiral length and local cast iron rate during mould cavity pouring. Simulation tests using NovaFlow&Solid Control Volume code were made. The technological castability test was used to determine thermal-physical data through simplified inversion problem. Influence of physical parameters in the database of simulation code on the spiral length obtained as the result of simulation was analyzed. It was found that critical fraction of capillary flow CLF down has the biggest impact on cast iron castability in the simulation code. The simulations resulted in defining parameters of gray iron GJL 250 and ductile iron GJS-400-15. For the parameters set, the length of castability spiral in simulations was in accordance with casting experiments.
EN
Nowadays, the most popular production method for manufacturing high quality casts of aluminium alloys is the hot and cold chamber die casting. Die casts made of hypereutectoid silumin Silafont 36 AlSi9Mg are used for construction elements in the automotive industry. The influence of the metal input and circulating scrap proportion on porosity and mechanical properties of the cast has been examined and the results have been shown in this article. A little porosity in samples has not influenced the details strength and the addition of the circulating scrap has contributed to the growth of the maximum tensile force. Introducing 80% of the circulating scrap has caused great porosity which led to reduce the strength of the detail. The proportion of 40% of the metal input and 60% of the circulating scrap is a configuration safe for the details quality in terms of porosity and mechanical strength.
EN
The mathematical model and numerical simulations of the solidification of a cylindrical shaped casting, which take into account the process of filling the mould cavity by liquid metal and feeding the casting through the riser during its solidification, are presented in the paper. Mutual dependence of thermal and flow phenomena were taken into account because have an essential influence on solidification process. The effect of the riser shape on the effectiveness of feeding of the solidifying casting was determined. In order to obtain the casting without shrinkage defects, an appropriate selection of riser shape was made, which is important for foundry practice. Numerical calculations of the solidification process of system consisting of the casting and the conical or cylindrical riser were carried out. The velocity fields have been obtained from the solution of momentum equations and continuity equation, while temperature fields from solving the equation of heat conductivity containing the convection term. Changes in thermo-physical parameters as a function of temperature were considered. The finite element method (FEM) was used to solve the problem.
14
Content available Influence of Silica Sand on Surface Casting Quality
EN
The current casting production of castings brings increased demands for surface and internal quality of the castings. Important factors, that influence the quality of casted components, are the materials used for the manufacture of moulds and cores. For the preparation and production of moulds and cores, in order to achieve a low level of casting defects, then it used a high quality input materials, including various types of sands, modified binders, additives, etc. However, even the most expensive raw materials are not a guarantee to achieve the quality of production. It is always necessary to choose the appropriate combination of input material together with an appropriate proposal for the way of the production, the metallurgical treatment of cast alloy, etc. The aim of this paper is to establish the basic principles for the selection of the base core mixtures components – sands to eliminate defects from the tension, specifically veining. Various silica sand, which are commonly used in foundries of Middle Europe region, were selected and tested.
EN
Cast axes are one of the most numerous categories of bronze products from earlier phases of the Bronze Age found in Poland. They had multiple applications since they were not only used objects such as tools or weapons but also played the prestigious and cult roles. Investigations of the selected axes from the bronze products treasure of the Bronze Age, found in the territory of Poland, are presented in the hereby paper. The holder of these findings is the State Archaeological Museum in Warsaw. Metallurgical investigations of axes with bushing were performed in respect of the casting technology and quality of obtained castings. Macroscopic observations allowed to document the remains of the gating system and to assess the range and kind of casting defects. Light microscopy revealed the microstructure character of these relicts. The chemical composition was determined by means of the X-ray fluorescence method with energy dispersion (ED-XRF) and by the scanning electron microscopy with X-ray energy dispersion analysis in micro-areas (SEM-EDS). The shape and dimensions of cores, reproducing inner parts of axes were identified on the basis of the X-ray tomography images. Studies reconstructed production technology of the mould with gating system, determined chemical composition of the applied alloys and casting structures as well as revealed the casting defects being the result of construction and usage of moulds and cores.
16
Content available Influence of additives in core-forming mixture
EN
In recent years, ingredients, also known as additives, which appreciably affect the quality of the casting surface, come to the fore. Additives - lower the temperature at which SiO2 (major component of silica sand) begins to soften and create a melt on the surface of the grains, increase the reactivity and decrease the temperature of a transition to tridimite and cristobalit. These passages support the increase of volume of subsurface sand stress and the tension for the formation of burrs and other casting defects on the surface of the core or the mold. Nowadays, as a great emphasis is put on the quality of the casts, it is therefore necessary to pay attention to these additives, which can effectively reduce the labor intensity in the production of castings and ensure a quality surface of castings.
EN
The paper presents the results of experimental-simulation tests of expansion-shrinkage phenomena occurring in cast iron castings. The tests were based on the standard test for inspecting the tendency of steel-carbon alloys to create compacted discontinuities of the pipe shrinkage type. The cast alloy was a high-silicone ductile iron of GJS - 600 - 10 grade. The validation regarding correctness of prognoses of the shrinkage defects was applied mostly to the simulation code (system) NovaFlow & Solid CV (NFS CV). The obtained results were referred to the results obtained using the Procast system (macro- and micromodel). The analysis of sensitivity of the modules responsible for predicting the shrinkage discontinuities on selected pre-processing parameters was performed, focusing mostly on critical fractions concerning the feeding flows (mass and capillary) and variation of initial temperature of the alloy in the mould and heat transfer coefficient (HTC) on the casting - chill interface.
EN
The results of researches of sorption processes of surface layers of components of sand moulds covered by protective coatings are presented in the hereby paper. Investigations comprised various types of sand grains of moulding sands with furan resin: silica sand, reclaimed sand and calcined in temperature of 700 oC silica sand. Two kinds of alcoholic protective coatings were used – zirconium and zirconium – graphite. Tests were performed under condition of a constant temperature within the range 30 – 35oC and high relative air humidity 75 - 80%. To analyze the role of sand grains in sorption processes quantitavie moisture sorption with use of gravimetric method and ultrasonic method were used in measurements. The tendency to moisture sorption of surface layers of sand moulds according to the different kinds of sand grains was specified. The effectiveness of protective action of coatings from moisture sorption was analyzed as well. Knowledge of the role of sand grains from the viewpoint of capacity for moisture sorption is important due to the surface casting defects occurrence. In particular that are defects of a gaseous origin caused by too high moisture content of moulds, especially in surface layers.
EN
The article summarizes the theoretical knowledge from the field of brazing of graphitic cast iron, especially by means of conventional flame brazing using a filler metal based on CuZn (CuZn40SnSi – brass alloy). The experimental part of the thesis presents the results of performance assessment of brazed joints on other than CuZn basis using silicone (CuSi3Mn1) or aluminium bronze (CuAl10Fe). TIG electrical arc was used as a source of heat to melt these filler materials. The results show satisfactory brazed joints with a CuAl10Fe filler metal, while pre-heating is not necessary, which favours this method greatly while repairing sizeable castings. The technological procedure recommends the use of AC current with an increased frequency and a modified balance between positive and negative electric arc polarity to focus the heat on a filler metal without melting the base material. The suitability of the joint is evaluated on the basis of visual inspection, mechanic and metallographic testing.
EN
This article presents a computer system for the identification of casting defects using the methodology of Case-Based Reasoning. The system is a decision support tool in the diagnosis of defects in castings and is designed for small and medium-sized plants, where it is not possible to take advantage of multi-criteria data. Without access to complete process data, the diagnosis of casting defects requires the use of methods which process the information based on the experience and observations of a technologist responsible for the inspection of ready castings. The problem, known and studied for a long time, was decided to be solved with a computer system using a CBR (Case-Based Reasoning) methodology. The CBR methodology not only allows using expert knowledge accumulated in the implementation phase, but also provides the system with an opportunity to "learn" by collecting new cases solved earlier by this system. The authors present a solution to the system of inference based on the accumulated cases, in which the main principle of operation is searching for similarities between the cases observed and cases stored in the knowledge base.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.