Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 61

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  carbon fiber
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
We propose employing wire electrical discharge machining (WEDM) for shaping thin-walled, multidirectional, carbon fiber reinforced silicon carbide (Cf-SiC) composite parts. Ceramic matrix composite Cf-SiC combines the outstanding mechanical properties of the carbon fiber with oxidation, abrasive wear, corrosion resistance, and high strength at the high temperature of the silicon carbide matrix. The impact of time-related electrical discharge machining parameters (pulse ON-time and break OFF-time) on the material removal rate and surface roughness are analyzed. The material removal rate of the Cf-SiC is proved to be 36% lower than that for machined steel grade 55. The high thermal stresses and interaction of the composite accompanying WEDM are also discussed. Furthermore, an alternative mechanism to the WEDM of metals has been investigated and confirmed by a scanning electron microscopy (SEM) analysis. The morphology of the machined Cf-SiC surface demonstrates the dominance of the carbon fibers’ fracture mechanism, both the transverse and longitudinal forms, with interphase detachment over craters and micro-cracks, pitting, and spalling on the SiC matrix. Satisfactory roughness indicators (Sa = 2 µm) are obtained in 3D topography measurements of the Cf-SiC surfaces. Concluding, the WEDM should be considered a good alternative to Cf-SiC abrasive machining when cutting holes, grooves, keyways, splines, and other complex shapes.
EN
Buckling restrained brace is an important structure for improving the seismic resistance of structures. Conducting research on new types of buckling restrained brace can improve the seismic performance and reliability of buckling resistant support. Four different types of buckling restrained braces specimens were designed and manufactured: cross-shaped square steel pipe members, cross-shaped round steel pipe members, cross-shaped carbon fiber members, and in-line carbon fiber members. By conducting quasi-static tests, the force displacement hysteresis curves, skeleton curves, stiffness degradation, equivalent viscous damping coefficient, and energy dissipation ratio of four different types of buckling restrained brace were analyzed. The research results showed that all four buckling restrained brace specimens have good hysteresis performance. The load-bearing capacity and energy consumption performance of the three specimens of square steel pipe, round steel pipe and carbon fiber with the same core unit are the same, but the inline type is worse than the cross type. The core unit specimen with a width of 80 mm is about 60% higher in bearing capacity and energy consumption than a specimen with a width of 50 mm. The core unit of some specimens undergoes multi-wave buckling. For carbon fiber specimens, the CFRP is prone to breakage due to the lateral thrust of the restraining unit. Therefore, steel hoop or stirrup should be added to the end to improve the restraint effect when designing and manufacturing.
EN
The article presents analysis of mechanical properties of specimens fabricated by fused deposition modeling (FDM). The four of considered materials are the well-known 3D printing filaments i.e., polylactide (PLA), Nylon 12 (PA12), acrylonitrile butadiene styrene (ABS), polyethylene terephthalate glycol (PET-G). The other four of the considered materials are composites with carbon i.e. polylactide with carbon fiber (PLA-CF), Nylon 12 with carbon fiber (PA12-CF), acrylonitrile butadiene styrene with carbon fiber (ABS-CF), polyethylene terephthalate glycol with carbon fiber (PETG-CF). The paper describes how the specimens were designed, printed, subjected to tensile testing, and examined using microscopy. The obtained data will be used to select the optimum material for the rapid manufacture of lower limb orthoses. Carbon composites were found to have better mechanical properties of their base material, but the fabrication of composite samples is much more time consuming, for the reason that the manufacturing process is not stable.
EN
Carbon fibers have been technically applied in high performance materials and industrial scale applications. Importantly, carbon fiber reinforced composite materials have found applications in aerospace industries. These properties of carbon fiber reinforced composites depend upon the carbon fiber features such as length, orientation, surface properties, adhesion with matrices, etc. To improve the surface properties of carbon fibers and adhesion and interactions with polymers, fiber modification has been suggested as an efficient approach. Carbon nanoparticle or nanocarbon functionalized carbon fibers have been manufactured using various facile physical and chemical approaches such as electrospraying, electrophoretic deposition, chemical vapor deposition, etc. Consequently, the modified carbon fibers have nanocarbon nanoparticles such as graphene, carbon nanotube, nanodiamond, fullerene, and other nanocarbons deposited on the fiber surface. These nanocarbon nanoparticles have fine capability to improve interfacial linking of carbon fibers with the polymer matrices. The chemical vapor deposition has been adopted for uniform deposition of nanocarbon on carbon fibers and chemical methods involving physical or chemical modification have also been frequently used. The resulting advanced epoxy/carbon fiber/nanocarbon composites revealed improved tensile and physical profiles. This review basically aims manufacturing and technical aspects of polymer/fiber/nanofiller nanocomposites toward the development of high performance structures. The resulting morphology, strength, modulus, toughness, thermal stability, and other physical features of the nanocarbon functionalized carbon fibers have been enhanced. In addition, the fabricated polymer/fiber/nanofiller nanocomposites have fine interfacial adhesion, matrix-nanofiller-filler compatibility, and other characteristics. The application areas of these nanomaterials have been found wide ranging including the strengthened engineering structures, supercapacitors, shape memory materials, and several others.
5
Content available remote Nowe nanomateriały do konstrukcji sprzętu sportowego
PL
Nowe nanomateriały dla sprzętu sportowego zostały przygotowane poprzez wzmocnienie żywicy epoksydowej (EP) włóknami węglowymi (CF) i/lub nanorurkami węglowymi (CNT) w celu poprawy jakości, twardości, plastyczności i odporności na starzenie materiałów kompozytowych. CNT zostały równomiernie rozmieszczone poprzez filtrację próżniową i fizyczne osadzanie na powierzchni włókien CF. Wytrzymałość na zginanie kompozytów CF/EP-CNT była o 28,08% większa niż niemodyfikowanego kompozytu CF/EP. Po starzeniu w temp. 120°C naprężenia w kompozycie zostały rozproszone ze względu na doskonałą dyspergowalność CNT, a tłumienie długich pęknięć spowodowało zmniejszenie obszaru uszkodzenia.
EN
New nanomaterials for sport equipment were prepd. by reinforcing an epoxy resin (EP) with C fibers (CF) and/or C nanotubes (CNT) to improve quality, hardness, plasticity and aging resistance of the composite materials. The CNT were uniformly dispersed by vacuum filtration and phys. deposition on CF fiber surface. The bending strength of CF/EP-CNT composites was by 28.08% higher than that of an unmodified CF/EP composite. After aging at 120°C, the stress in the composite was dispersed due to the excellent dispersibility of CNT, and the suppression of long cracks resulted in a redn. of damage area.
EN
This article is a literature review related to the methods of functionalization of carbon fibers for tissue engineering applications. Through physical modification, it is possible to obtain a layer of a chemical compound on the carbon fibers surface and to impart additional properties. On the other hand, chemical modification may lead to the incorporation of appropriate functional groups into the carbon fiber structure, capable of attaching, among others, biologically active compounds. The paper presents the advantages and disadvantages of the carbon fibers modifying methods, with particular emphasis on the use of such modified fibers in medicine.
PL
Niniejsza praca stanowi przegląd literatury dotyczący metod funkcjonalizacji włókien węglowych przeznaczonych do zastosowań w inżynierii tkankowej. Poprzez modyfikację fizyczną możliwe jest uzyskanie warstwy związku chemicznego na powierzchni włókien węglowych i nadanie im dodatkowych właściwości. Natomiast modyfikacja chemiczna może prowadzić do wbudowania w strukturę włókna węglowego odpowiednich grup funkcyjnych zdolnych do przyłączania m.in. związków aktywnych biologicznie. W pracy przedstawiono zalety i wady stosowanych metod modyfikacji włókien węglowych, ze szczególnym naciskiem na zastosowanie tak modyfikowanych włókien w medycynie.
EN
With the rapid increase in the use of wireless electronic devices, electromagnetic pollution has been recognized as a serious threat. There has been an increasing demand for the use of cement composites as electromagnetic shielding materials. Thus, this study investigated the advantages of adding a small dosage of carbon fibers to enhance the mechanical and electrical properties of strain-hardening cementitious composites (SHCCs) containing steel fibers. In addition, the effect of microcrack formation on the electromagnetic interference (EMI) shielding effectiveness of the SHCCs was analyzed. For this purpose, four different residual tensile strains were applied in preloading tests in the range of 0.015–0.1%. The test results suggested that the tensile performance of the SHCCs was improved by adding 0.2 vol% carbon fibers. Moreover, the rate of increase of the energy absorption capacity was higher (50%) than those of the tensile strength and strain capacity. The electrical conductivity and EMI shielding effectiveness of the SHCCs were noticeably increased by the addition of carbon fibers. The highest shielding effectiveness of 45.6 dB, at 1 GHz, was achieved for the SHCC containing 2% steel fibers and 0.2% carbon fibers, which was approximately 6% higher than that of the corresponding plain SHCC with only steel fibers. An approximately 44–47% lower shielding effectiveness was observed with the formation of through microcracks; however, the number of cracks and the residual tensile strain did not significantly influence the shielding effectiveness. This study can be a basis for evaluating EMI shielding effectiveness of damaged structures.
EN
One of the basic trends in the automotive industry today is to achieve the most acceptable ratio between the total weight of the car to its overall performance and utility properties. Reducing the weight of cars is largely due to the use of new materials, where composite materials offer a wide space for their application. Composite materials have their specific properties which is very beneficial in reducing the total weight. Another advantages is strength, stiffness, low fiber density, the ability to form them into any shape based on the required applications. One of the challenges associated with the use of composite materials is the search for new technological possibilities of joining composite materials with metals. These include technologies as for example riveting, ultrasonic welding, but especially gluing. Bonding is currently one of the most preferred ways of joining composite materials. The paper deals with testing of technology of bonding composite materials with metals used in the manufacture of automobiles and a comparison of individual results obtained from the experiment.
EN
In this study, the electrospray deposition (ESD) method was used to deposit carbon nanotubes (CNT) onto the surfaces of carbon fibers (CF) in order to produce hybrid carbon fiber-carbon nanotubes (CF-CNT) which is rarely reported in the past. Extreme high-resolution field emission scanning electron microscopy (XHR-FESEM), high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy (XPS) were used to analyse the hybrid carbon fiber-carbon nanotube (CF-CNT). The results demonstrated that CNT was successfully and homogenously distributed on the CF surface. Hybrid CF-CNT was then prepared and compared with CF without CNT deposition in terms of their tensile properties. Statistically, the tensile strength and the tensile modulus of the hybrid CF-CNT were increased by up to 3% and 25%, respectively, as compared to the CF without CNT deposition. The results indicated that the ESD method did not cause any reduction of tensile properties of hybrid CF-CNT. Based on this finding, it can be prominently identified some new and significant information of interest to researchers and industrialists working on CF based products.
EN
This study focuses on the electromagnetic wave absorption performance (EWAP) of ultra-high-performance concrete (UHPC) incorporated with carbon black (CB) and carbon fiber (CF) in 2-18 GHz frequency range (required for the radar wave absorbing materials). The reflectivity of the traditional UHPC was investigated and compared to the cement-based composites reported in the literatures, so as to illustrate the advantages of novel UHPCs with respect to EWAP. Afterwards, the effect of CB and CF on the compressive strength, complex permittivity and reflectivity of the novel UHPCs was investigated. The microstructure of the novel UHPCs was also explored via scanning electron microscopy to illustrate the mechanism of performance enhancement on incorporating CB and CF. The results indicated that EWAP of the traditional UHPC was similar or inferior (at specific frequencies) to the literature reported cement-based composites. However, EWAP of the novel UHPCs was significantly improved after reinforcing with CB or CF. A positive effect of CB and CF was also observed on the compressive strength of the developed UHPCs. This study provides avenues for the use of UHPCs in protecting structures for absorbing the electromagnetic waves and safeguarding these structures against extreme loads, including blast and penetration.
EN
This paper investigates the strenght of a conceptual main rotor blade dedicated to an unmanned helicopter. The blade is made of smart materials in order to optimize the efficiency of the aircraft by increasing its aerodynamic performance. This purpose was achieved by performing a series of strength calculations for the blade of a prototype main rotor used in an unmanned helicopter. The calculations were done with the Finite Element Method (FEM) and software like CAE (Computer-Aided Engineering) which uses advanced techniques of computer modeling of load in composite structures. Our analysis included CAD (Computer-Aided Design) modeling the rotor blade, importing the solid model into the CAE software, defining the simulation boundary conditions and performing strength calculations of the blade spar for selected materials used in aviation, i.e. fiberglass and carbon fiber laminate. This paper presents the results and analysis of the numerical calculations.
12
Content available remote Modeling of high-speed flywheel designs for technological equipment
PL
W artykule przeanalizowano konstrukcję napędów mechanicznych oraz obszary ich zastosowania. Na podstawie przeprowadzonej analizy opracowano projekt napędu kinetycznego opartego na sprzęgle z materiału kompozytowego, przeznaczonego do pracy z wysoką częstotliwością obrotową. Zaproponowano najbardziej optymalne koła zamachowe pod względem akumulacji energii kinetycznej i jednocześnie maksymalnej wytrzymałości konstrukcji oraz przeprowadzono ich symulację numeryczną. Na podstawie wyników analizy modalnej ustalono wartości i postaci częstotliwości własnych oscylacji wirników ze sprzęgłami o różnych konstrukcjach, co pozwala na sterowanie procesem, znając graniczne wartości maksymalnej dopuszczalnej częstotliwości obrotów. Na podstawie modelowania numerycznego ustalono, że kształt sprzęgła oraz jego masa mają istotny wpływ na ograniczenie prędkości obrotowej. Jednocześnie sprzęgło o najmniejszej masie, ale największej częstotliwości obrotów ma maksymalną jednostkową energochłonność, co świadczy o tym, że jest to najbardziej efektywny wariant pod względem kosztów materiałowych i zastosowania tej konstrukcji w urządzeniach do gromadzenia energii podczas pracy urządzeń technologicznych. Porównano koszt dla sprzęgła o zawartości materiału kompozytowego powyżej 68% z kosztem sprzęgła, które ma maksymalną wartość jednostkową energochłonności na 1 kg masy.
EN
The article analyzes the design of mechanical energy drives and their use areas. Based on the analysis, the kinetic energy drive designis based on the composite material's flywheel, capable of working with a high frequency of rotation. The most optimal flywheels in terms of accumulation of kinetic energy and at the same time the maximum strength of the design are proposed, and their numerical simulation is carried out. The modal analysis results established the values and forms of the eigenfrequencies of oscillations of rotors with flywheels of various structures, which allows controlling the process of overclocking, knowing the limit values of the maximum permissible frequency of rotation of the flywheels. Numerical modeling established that the flywheel's shape and its mass significantly affect the rotor speed limit with the flywheel. At the same time, the flywheel with the lowest mass but the highest frequency of rotation has the maximum specific energy intensity per unit of mass, which determines it as the most effective option in terms of the cost of material and the use of this design in devices for energy accumulation during the operation of technological equip-ment. The calculation results also show that the lamb flywheel has the most incredible absolute energy in-tensity. Simultaneously, the costs of the composite material above 68% are compared with the flywheel, which has the maximum specific value of the energy intensity per 1 kg of its mass.
PL
Celem niniejszego artykułu jest przedstawienie najważniejszych informacji dotyczących kompozytów typu CFRP i przykładów ich zastosowania w budowie pojazdów szynowych. W pierwszej części artykułu przedstawiono podstawowe cechy charakterystyczne kompozytów typu CFRP, a także zaprezentowano porównanie ich właściwości z właściwościami konwencjonalnych materiałów konstrukcyjnych. Następnie omówiono przykłady wykorzystania kompozytów z tej grupy w budowie elementów konstrukcyjnych pojazdów szynowych. Ostatnią część artykułu stanowi analiza motywacji, które przemawiają za wprowadzeniem tego rodzaju kompozytów do inżynierskiej praktyki kolejowej.
EN
The aim of this article is to provide crucial information on CFRP composites and examples of their use in rail vehicle construction. The first part outlines the key characteristics of CFRP composites and compares their properties with conventional structural materials. Implementation examples of this group of composites for structural components of rail vehicles are discussed further. The final section of the article analyses the reasons for introducing composites of this type into the engineering practice of railways.
EN
This study aims to investigate the effect of fiber hybridization of sugar palm yarn fiber with carbon fiber reinforced epoxy composites. In this work, sugar palm yarn composites were reinforced with epoxy at varying fiber loads of 5, 10, 15, and 20 wt % using the hand lay-up process. The hybrid composites were fabricated from two types of fabric: sugar palm yarn of 250 tex and carbon fiber as the reinforcements, and epoxy resin as the matrix. The ratios of 85 : 15 and 80 : 20 were selected for the ratio between the matrix and reinforcement in the hybrid composite. The ratios of 50 : 50 and 60 : 40 were selected for the ratio between sugar palm yarn and carbon fiber. The mechanical properties of the composites were characterized according to the flexural test (ASTM D790) and torsion test (ASTM D5279). It was found that the increasing flexural and torsion properties of the non-hybrid composite at fiber loading of 15 wt % were 7.40% and 75.61%, respectively, compared to other fiber loading composites. For hybrid composites, the experimental results reveal that the highest flexural and torsion properties were achieved at the ratio of 85/15 reinforcement and 60/40 for the fiber ratio of hybrid sugar palm yarn/carbon fiber-reinforced composites. The results from this study suggest that the hybrid composite has a better performance regarding both flexural and torsion properties. The different ratio between matrix and reinforcement has a significant effect on the performance of sugar palm composites. It can be concluded that this type of composite can be utilized for beam, construction applications, and automotive components that demand high flexural strength and high torsional forces.
PL
Zbadano wpływ dodatku przędzy z włókien palmy cukrowej o grubości 250 tex na wytrzymałość kompozytów epoksydowych wzmocnionych włóknem węglowym. Sumaryczna zawartość włókien w osnowie żywicy epoksydowej była równa 5, 10, 15 i 20% mas., a stosunek udziału przędzy palmy cukrowej do włókna węglowego wynosił 50 : 50 i 60 : 40. Właściwości mechaniczne kompozytów hybrydowych o stosunku osnowy do wzmocnienia 85 : 15 i 80 : 20 scharakteryzowano na podstawie testów na zginanie i skręcanie. Stwierdzono, że wytrzymałość na zginanie i skręcanie kompozytu epoksydowego z udziałem 15% mas. przędzy palmy cukrowej była większa niż pozostałych kompozytów niehybrydowych i wynosiła, odpowiednio, 7,40% i 75,61%. W wypadku kompozytów hybrydowych stwierdzono, że najlepszą wytrzymałość na zginanie i skręcanie wykazywały kompozyty z udziałem 15% mas. wzmocnienia w stosunku 60 : 40 włókien palmy cukrowej do włókien węglowych. Różna zawartość włókien wzmacniających w osnowie epoksydowej miała istotny wpływ na właściwości wytwarzanych kompozytów. Kompozyty tego rodzaju można wykorzystać do budowy elementów konstrukcyjnych i motoryzacyjnych, o dużej wytrzymałości na zginanie i działanie sił skręcających.
PL
W niniejszej pracy przedstawiono problematykę wykorzystania metod przyrostowych w budowie i obróbce elementów kompozytowych o złożonej geometrii, jako składową szerszego projektu poświęconego budowie zespołu chłodzącego ogniwo paliwowe motoszybowca AOS-H2. Zważywszy na niewielkie wymiary części kompozytowych (jak na warunki zastosowań danego materiału), konieczne było wprowadzenie druku 3D, jako technologii pomocniczej zarówno w trakcie laminowania, obróbki półfabrykatów, jak również jako tańszą i szybszą alternatywę produkcyjną stempli dociskowych. Zastosowanie metod przyrostowych wpłynęło nie tylko na poprawę jakości gotowego wyrobu, ale również było niezbędne, aby niektóre z elementów wentylatora, wbrew powszechnej opinii, mogły zostać wykonane z włókna węglowego w tak niewielkiej skali (np. łopatki, których wysokość nie przekraczała 50 mm). Wprowadzenie druku 3D do pracy z laminatem umożliwiło użycie kompozytu do budowy elementów o złożonej geometrii i stosunkowo niewielkich wymiarach.
EN
In recent years, the increased interest in the design and fabrication of lightweight polymer composites with various combinations and stoichiometry is due to their enhancement of electrical, mechanical, thermal, and biological properties compared to the properties of conventional materials. With that view, the present study deals with the effects of low density polyethylene composites (LDPE) reinforced with epoxy resin, glass fiber, carbon fiber, and Kevlar towards the mechanical, thermal, and water absorption properties. The mechanical studies showed that the LDPE composite reinforced carbon fiber has the best tensile properties compared to other composites and this can be mostly due to the proper bonding and associated interaction between the polymeric matrix and the bidirectional layer of the fibers. Also, the carbon fiber reinforced composite has superior properties of impart energy compared to the other composites and the non-reinforced ones and this is attributed to the crystalline nature of carbon fiber. Further studies of the thermal properties indicated that the retention of thermal stability for all the fiber-reinforced polymer composites, while the water absorption revealed a considerable increase in the weight of Kevlar fiber-reinforced composite. From the overall analysis, the enhanced properties of LDPE matrix reinforced fibers are linked to the morphological changes that occurred and are directly affected by the nature of the fiber.
PL
Zwiększone w ostatnich latach zainteresowanie projektowaniem i wytwarzaniem lekkich kompozytów polimerowych wynika z ich lepszych właściwości elektrycznych, mechanicznych, termicznych i biologicznych w porównaniu z cechami materiałów konwencjonalnych. Zbadano wpływ rodzaju wzmocnienia (włókno szklane, włókno węglowe i włókno Kevlar) na właściwości mechaniczne, termiczne i absorpcję wody laminatowych kompozytów polietylenu małej gęstości (LDPE) z żywicą epoksydową. Stwierdzono, że kompozyt LDPE z włóknem węglowym, w porównaniu z innymi kompozytami, wykazuje najlepszą wytrzymałość na rozciąganie, co może wynikać głównie z interakcji polimerowej osnowy z dwukierunkową warstwą włókien. Ponadto kompozyt ten ma większą zdolność przenoszenia energii niż pozostałe badane kompozyty, co można przypisać krystalicznej budowie włókna węglowego. Badania właściwości termicznych wykazały stabilność termiczną wszystkich kompozytów polimerowych wzmocnionych włóknami oraz znaczną absorpcję wody kompozytu wzmocnionego włóknem Kevlar.
PL
W artykule przedstawiono wyniki badań eksperymentalnych belek pełnowymiarowych zbrojonych różnego rodzaju zbrojeniem FRP: (i) zbrojenie na bazie włókien bazaltowych BFRP(Basalt FRP); (ii) hybrydowe zbrojenie HFRP(Hybrid FRP) z włóknami węglowymi i bazaltowymi oraz (iii) nano-hybrydowe pręty nHFRP (nano-Hybrid FRP) ze zmodyfikowaną żywicą epoksydową. Sprawdzenie odporności ogniowej przeprowadzono wg scenariusza pożaru umownego zgodnie z krzywą standardową ISO-834 – elementy były poddane obciążeniu (zginaniu 4-punktowemu) i jednocześnie podgrzaniu z trzech stron (z boków oraz od strony dolnej). Wyniki wskazały, że wysoka temperatura ma istotny wpływ na nośność elementów (zmniejszenie nośności średnio o ok. 40%) oraz na sposób ich zniszczenia. Belka zbrojona prętami BFRP wykazała najlepsze wyniki – zniszczenie próbki nastąpiło po 97 min, maksymalne ugięcie wyniosło 16 cm, a temperatura mierzona na spodzie belki ok. 940°C i ok. 600°C na prętach. Odporność ogniowa elementów zbrojonych prętami FRP różniła się w zależności od rodzaju zastosowanego zbrojenia.
XX
This paper describes the results of experimental studies for full-size beams reinforced with various types of FRP reinforcement: (i) Basalt – FRP (BFRP), (ii) Hybrid – FRP (HFRP) with carbon and basalt fibers, and (iii) nano-Hybrid-FRP (nHFRP) with modified epoxy resin. The fire resistance was checked in accordance with the contractual fire scenario based on the ISO-834 standard curve – the elements were subjected to loading (4-point bending) and at the same time heating of three edges (from the sides and from the bottom). The results showed that the temperature has a significant impact on the load-bearing capacity of the elements (the strength capacity was reduced by approximately 40%) and on the method of their destruction. The beam reinforced with BFRP bars showed the best results, destruction of the sample occurred after 97 minutes, maximum deflection - 16 cm, and the temperature measured on the bottom of the beam reached 940°C and about 600°C on the bars. The fire resistance of FRP reinforced elements was varying and depends on the type of reinforcement used.
EN
Two types of composites, consisting of pure magnesium matrix reinforced with two commercially used carbon fibers, were systematically studied in this paper. The composites fabricated by the pressure infiltration method, were subjected to quasistatic and dynamic compression tests. Morphology of fiber strands was observed using scanning electron microscope (SEM). The application of carbon fibre reinforcement led to the stiffening of tested materials, resulting in the limitation of the possible compression to approx. 2.5%. The performed tests revealed the remarkable difference in compression strength of investigated compositions. The cause of that effect was that GRANOC fiber reinforced composite exhibited insufficient bond quality between the brittle fibers and the ductile matrix. T300 reinforced composite presented good connection between reinforcement and matrix resulting in increased mechanical properties. Investigated composites demonstrated higher mechanical strength during deformation at high strain rates. Microscopic observations also proved that the latter fibers with regular shape and dense packaging within the filaments are proper reinforcement when designing the lightweight composite material.
EN
Authors showed the influence of stabilization of the honeycomb core on shape of the composite sandwich test panel. Adhesive film laid on core ramps and cured with suitable cure cycle served as core stabilizer. Test panel geometry included different ramp angles (20° and 30°). To verify stabilization process a technology trial was performed. Three test panels were manufactured (3-stage, 1-stage and 1-stage with stabilized core). All test panels were manufactured in OoA process (Out of Autoclave). Panel surfaces were scanned with 3D scanner and compared with the reference CAD model. Both outer skin and inner skin were manufactured in Automated Fiber Placement Laboratory of Warsaw Institute of Aviation.
PL
W artykule przedstawiono wpływ stabilizacji wypełniacza komórkowego na kształt utwardzonej części kompozytowej w postaci przekładkowego panelu testowego o różnych kątach pochylenia ramp (20° oraz 30°). Jako stabilizator wypełniacza posłużył klej błonkowy położony na rampach wypełniacza i następnie utwardzony w odpowiednim cyklu termicznym. Po przeprowadzeniu pozytywnej próby technologicznej stabilizacji wypełniacza zostały wykonane 3 panele w różnych technologiach (1 oraz 3 etapowym). Panel ze stabilizowanym wypełniaczem został utwardzony w procesie 1 etapowym. Wszystkie panele wytworzone zostały w procesie bez użycia autoklawu (OOA – Out of Autoclave). Porównaniu metodą skanowania 3D została poddana powierzchnia wynikowa paneli po utwardzeniu. Jako referencję do porównania został przyjęty model CAD panelu. Zarówno warstwa zewnętrzna jak i wewnętrzna zostały ułożone w Laboratorium Zrobotyzowanego Układania Taśm Kompozytowych Instytutu Lotnictwa za pomocą robota AFP (Automated Fiber Placement).
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.