W artykule omówiono specyfikę fibrobetonu. Przedstawiono różnego rodzaju włókna do zbrojenia betonu. Opisano jego właściwości, a także wpływ zbrojenia betonu na optymalizację kosztów inwestycji.
EN
The article discusses the specificity of fibre concrete. Various types of fibres for concrete reinforcement are presented. Its properties as well as the impact of concrete reinforcement on the optimization of investment costs are described.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The aim of the article is to analyze the influence of the variability of the electrical parameters of non-ideal and absorbing dielectric (usual concrete) on the values of the electric field intensity. A detailed analysis was also made of the influence of the reinforcement diameter, the number of rows and the spacing between the bars on the values of the electric field intensity. The subject of the research was a model containing a loadbearing wall made of concrete (absorbing dielectric) with reinforcement in the form of steel rods (conductor). Four reinforcement systems commonly used in construction were analyzed. Additionally, the discussion covered the influence of electrical parameters (electric permittivity, conductivity) on the field intensity values calculated for heterogeneous, complex material structures. The results of the field generated by the wireless communication system operating at the frequency f = 5 GHz are presented. The numerical finite difference time domain (FDTD) method was used. The influence of the values of electric permittivity and conductivity of concrete on the field intensity values was discussed in detail.
PL
Celem publikacji jest analiza wpływu zmienności wartości parametrów elektrycznych nieidealnego i absorbującego dielektryka (beton zwykły) na wartości natężenia pola elektrycznego. Również dokonano szczegółowej analizy wpływu średnicy zbrojenia, liczby rzędów oraz rozstawu pomiędzy prętami na wartości natężenia pola elektrycznego. Przedmiotem badań był model zawierający ścianę nośną wykonaną z betonu (absorbujący dielektryk) wraz ze zbrojeniem w postaci stalowych prętów (przewodnik). Analizowano cztery, powszechnie stosowane w budownictwie układy zbrojenia. Dodatkowo dyskusji poddano wpływ parametrów elektrycznych (przenikalność elektryczna, konduktywność) na wartości natężenia pola obliczone dla niejednorodnych, złożonych struktur materiałowych. Zaprezentowane zostały wyniki pola generowanego przez system komunikacji bezprzewodowej pracujący przy częstotliwości f=5 GHz. Zastosowano numeryczną metodę różnic skończonych w dziedzinie czasu (FDTD). Szczegółowo omówiono wpływ stosowanych w literaturze wartości przenikalności elektrycznych oraz konduktywności betonu na wartości natężenia pola.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Steel fibre-reinforced concrete (SFRC) has shown better performance behaviour with respect to the post-crack strength and in restricting the crack width and its propagation. Studies on behaviour of SFRC under repeated loading are a significant work. Behaviour of reinforced concrete structures during ground excitations in the form of earthquake forces could be significantly improved by addition of steel fibres in suitable dosage. Fibre type, aspect ratio, and dosage of fibres significantly influence the behaviour of steel fibre-reinforced concrete. Here, the work carried by various researchers with respect to the studies on the behaviour of SFRC under monotonic and cyclic stress in compression is presented. An experimental investigation on stress–strain characteristics of SFRC under monotonic loading in compression was carried, comprising M20 grade concrete, hooked-end steel fibres (l = 50 mm, diameter = 1 mm), and varying fibre dosages of 1.0, 1.25, 1.5, and 1.75% by volume of concrete. The stress–strain characteristics arrived based on the above experimental studies were compared with theoretical stress–strain characteristics, based on the equations proposed in literature. This served in understanding the behaviour of SFRC with respect to their stress–strain characteristics using experimental studies and by theoretical models, and analyse the extent of agreement and acceptance.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Fibrobeton, czyli beton zbrojony włóknami, otrzymywany jest przez dodanie do mieszanki betonowej włókien metalicznych lub niemetalicznych. Przeprowadzone badania miały na celu sprawdzenie, czy norma PN-EN 14651, przeznaczona do trzypunktowego testu zginania betonowych próbek zbrojonych włóknami metalicznymi, może być również zastosowana do badań betonu z włóknami syntetycznymi. Zbadano ponadto urabialność i wytrzymałość na ściskanie betonu z włóknami i bez nich. Sprawdzono również, czy dana objętość i rodzaj zastosowanej fibry mógłby zastąpić tradycyjne zbrojenie prętami stalowymi, a więc czy badany kompozyt może pełnić funkcję konstrukcyjną. W ramach badań została przygotowana betonowa mieszanka bez włókien oraz mieszanka z dodatkiem 0,22% (2 kg/m3) włókien syntetycznych. Dla obu mieszanek ilość cementu, kruszywa, wody i superplastifikatora była identyczna. W artykule omówiono podstawy prowadzenia badań, zastosowane materiały, sposób przygotowania próbek oraz technikę badań i wyniki badań wytrzymałości na ściskanie.
EN
Fiber-reinforced concrete is obtained by adding metallic or nonmetallic fibers to the concrete mixture. The tests were carried out to check whether the PN-EN 14651 standard, intended for three-point bending test the concrete samples reinforced with metallic fibers, can also be used for testing the concrete samples reinforced with synthetic fibers. In addition, the workability and compressive strength of concrete with and without fibers were tested. It was also checked whether used volume and type of fiber could replace traditional reinforcement with steel bars, and thus whether the tested composite can function as a structure. As part of the research, concrete mixture without fibers and with the addition of 0,22% (2 kg/m3) of synthetic fibers were prepared. For both mixtures, the amount of cement, aggregate, water and superplasticizer was identical. The article presents the basics of testing, materials used, method of sample preparation as well as the test technique, and the results of the compressive strength tests.
Przedstawiono możliwość zastosowania normy PN-EN 14651, przeznaczonej do badania betonów z fibrą stalową, do określenia wytrzymałości na rozciąganie przy zginaniu betonów z dodatkiem 2,0 i 3,0 kg/m3 włókien polimerowych o różnej geometrii i formie. Pozostały skład mieszanki betonowej był niezmienny w przypadku każdej serii. Opisano również użyte materiały, metodykę badań oraz wyniki badań konsystencji i wytrzymałości na ściskanie betonów z fibrą i bez fibry. Przeprowadzono analizę uzyskanych wyników i podsumowano wpływ włókien niemetalicznych na właściwości betonu.
EN
In the article, the possibility of use the PN-EN 14651 standard, intended for testing concretes with steel fibers, to determine the flexural strength of concrete with the addition of 2.0 and 3.0 kg/m3 of polypropylene fibers of different geometry and form was presented The remaining composition of the concrete mix was the same for each series. Additionally, the used materials, the methodology of tests, results of consistency tests and the evaluation of the compressive strength of concrete with and without fibers were discussed. Finally, the obtained results were analyzed and the influence of non - metallic fibers on the properties of concrete was summarized.
Badania strefy przejściowej stal pręta zbrojeniowego - matryca cementowa wykazały, że jony żelaza dyfundują do matrycy cementowej i reagują z jonami wapniowymi, z utworzeniem uwodnionego żelazianu wapnia. Po trzech miesiącach zaznacza się również reakcja jonów żelaza z głównym składnikiem zaczynu, jakim jest faza C-S-H. Początkowo jony żelaza wnikają pomiędzy warstwy tej fazy, a następnie powodują jej stopniową przemianę w uwodniony żelazian wapnia. Powstaje warstewka uwodnionego żelazianu wapnia na matrycy cementowej. Natomiast dyfuzja jonów wapnia do warstewki pasywacyjnej na stali jest znacznie mniej zaawansowana, niż jonów żelaza do matrycy cementowej. Wykonane mikroanalizy pokazują, że dyfuzja jonów żelaza przeważa, a jony wapnia mają bardzo mały wpływ na skład warstewki pasywacyjnej na stali. Nie są one „ruchliwe”, mimo że występują w dużym stężeniu w roztworze w fazie ciekłej matrycy cementowej. Główną rolę w tych procesach odgrywają jony żelaza, dyfundujące z pręta zbrojeniowego do matrycy cementowej.
EN
The study of transition zone - steel of the reinforcing rod cement matrix was shown that the iron ions are diffusing to the cement matrix and are reacting with the calcium ions, with the formation of hydrated calcium ferric. Already after 3 months the reaction of iron ions with the main component of the cement paste i.e. C-S-H phase is evident. Initially the iron ions are penetrating between the layers of this phase and next they are causing its gradual transformation in hydrated calcium ferric. Thus the layer of hydrated calcium ferric on the cement matrix is formed. However, the diffusion of calcium ions to the passivation film on steel is significantly less advanced than the ferric ions to the cement matrix. The microanalysis are showing the the iron ions diffusion is prevailing and the calcium ions have the low influence on the composition of passivation film on steel. They are not “movable”, despite that they have high concentration in the liquid phase in cement matrix. The main role in these processes the ferric ions are playing, which are diffusing from reinforcing bar to the cement matrix.
Today, using Fiber Reinforced Polymer (FRP) sheets is one of the conventional methods in retrofitting concrete structures. Some factors affecting FRP sheets proper performance include mechanical properties, surface specifications, connector’s material and connecting approach in concrete elements. Previous studies showed that FRP epoxy resin and its basic surface have a significant impact on the ultimate bearing capacity. In line with the development of nanotechnology in recent years, this paper presents an experimental study to show the effects of adding the best percentage of nano-carbons to adhesive resin and evaluate the ultimate axial, shear and bending strengths in concrete samples. The results show that using FRP with carbon nanotube reinforced resins will significantly increase stiffness and ductility by 100%; moreover, it shows an effective increase of almost 13% in axial and flexural strengths of specimens.
8
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Highly ductile fiber-reinforced concrete (HDC) is a class of cementitious composites reinforced with polyvinyl alcohol (PVA) fibers and exhibits strain-hardening behavior and multiple fine cracks under tension. This study aims to evaluate the cracking behavior and propose a simple calculation approach of the crack width and crack spacing of reinforced HDC (RHDC) flexural members. The four-point bending tests were conducted for RHDC beams with a different ultimate tensile strain of HDC and tensile reinforcement ratio. The flexural cracking performance of beams was mainly analyzed. The results showed that the width, spacing, height of flexural cracks of RHDC beams was significantly smaller compared with those of reinforced concrete (RC) beams. An increase in the ultimate tensile strain of HDC decreases the crack width and crack height while has little influence on the average crack spacing of RHDC beams. The effect of the tensile reinforcement ratio on the crack width is notable for RHDC beams with a higher ultimate tensile strain of HDC. The increasing of the tensile reinforcement ratio decreases the average crack spacing and crack height of RHDC beams. Furthermore, theoretical formulas for the average crack spacing, average crack width, and maximum crack width of RHDC beams were proposed based on the bond interaction between rebars and HDC and the fiber bridging stress. The predicted values have good agreement with the experimental values, indicating that the proposed method is reliable to evaluate the crack behavior of RHDC flexural members. Based on an accurate validation, the effect of cover thickness, HDC strength, and rebar diameter on the crack behavior of RHDC beams was conducted and found consistent with the law of RC beams.
The main issue of the article is the corrosion of the reinforced concrete elements by the co-influence of the aggressive and power factors. The problem of corrosion is extremely actual one. Therefore the tests were carried out upon the specimens considering the corrosion in the acid environment, namely 10 % H2SO4. The acid environment H2SO4 was taken as a model of the aggressive environment. Conclusions concerning the corrosion model of the cross section and investigation of stress-strain state have been made. That material concerns the problem of the reinforced concrete corrosion as a whole construction. Reinforced concrete beams were tested with and without the co-action of the aggressive environment and power factor.
The paper deals with the working peculiarities of the support zones of reinforced concrete elements subject to bending with due account of the eccentric compression and tension. The authors performed simulation of the stress-strain behaviour of the indicated structures with the aid of “Lira” software which results are shown in the graphical and tabulated form. The performed simulation allowed of tracing the work of the studied sample beams till collapse. Such approach made it possible to single out and generalize the main collapse patterns of the inclined cross-sections of the reinforced concrete elements subject to bending on which basis the authors developed the improved method to calculate their strength (Karpiuk et al., 2019).
In this work on the basis of the developed and tested mathematical model, the numerical experiment is conducted in order to study in more detail the specifics of performance of concrete beams` with combined reinforcement. For this purpose nine series of reinforced concrete beams with different combination of steel bars (A400C, At800, A1000) and ribbon reinforcement (C275) were modeled. In the developed series two classes of concrete were used: C50/60, C35/45. The functions derived on the basis of mathematical modeling allow us to determine the recommended percentage of high-strength reinforcement of common reinforced concrete structures with single reinforcement. Therefore, the possibility is obtained to reduce the total structures` reinforcement percentage, increasing their deformability by the specified value without affecting the bearing capacity.
The article presents the problems of building and maintaining urban transport infrastructure in Warsaw at the turn of the 20th century. The text concerns Kajetan Mościcki (1855-1933), engineer, who was appointed by the acting Mayor of Warsaw, General Sokrates Starynkiewicz, to the position of senior city engineer and head of the municipal construction department, where he worked from 1889 to 1909. During this period, he paved the streets which were worn or damaged by sewerage works with wooden blocks and covered the sidewalks with concrete slabs. He designed the first slip road in the Kingdom of Poland in the form of a spiral, and he also participated in the construction of the oldest road engineering structures made of reinforced concrete, located in Ujazdowski Park and on Karowa street in Warsaw, the first Warsaw power plant and the second city bridge across the Vistula. In addition to his professional activity, Kajetan Mościcki was an inventor in the fields of mechanics and electrical engineering. At the end of his life, he founded an award that the Polish Academy of Arts and Sciences was to grant to Polish scientists for outstanding achievements.
Alfa fiber reinforced concretes are not used to their full potential due to the limited information on their properties, especially in more severe environments. In this study, the effects of elevated temperature on the properties of concretes reinforced with Alfa fiber were analyzed. The influence of fiber length on reinforced concretes is mainly investigated. For this purpose, five types of structural concretes were formulated; two types of concrete reinforced with 1% Alfa fiber volume using two different fiber lengths of 20 mm and 30 mm (AC-20, and AC-30), and three control concretes, two polypropylene fiber reinforced concretes (PC) using the same fiber length (PC-20, PC-30), and one ordinary concrete (OC). The results showed that with the increase of temperature, the mechanical performance decreased and the porosity rose continually for all mixtures. However, the use of Alfa fiber with a length of 20 mm showed the optimal results in terms of compressive and tensile strength, even at temperatures of 600°C. This finding suggests that Alfa vegetable fiber can be used to produce more sustainable concretes with acceptable mechanical properties compared to the use of polypropylene fiber, even under severe conditions of elevated temperature
The purpose of this paper is to study the durability of concrete reinforced with hemp fibers in the face of external Sulfatic attack. For this purpose, five types of concrete were formulated; three types of concrete reinforced with hemp fibers (HC-0.25, HC-0.5, and HC-1) at 0.25%, 0.5%, and 1 % of hemp fibers in volume, respectively. And two control concretes, being ordinary concrete (OC) and polypropylene fiber reinforced concrete (PC). To assess the sulfatic attacks, the described concrete types underwent two aging protocols: 1) a complete immersion in 12.5 % Sodium Sulfate (Na2SO4) solution, and 2) an accelerated aging protocol consisting of immersion/drying in the same sulfate solution at a temperature of 60°C. The results show that concrete reinforced with 0.25 % of hemp fibers is the optimal amount compared to control concretes in terms of physico-mechanical performance and durability under sulfate attack. This number of fibers could enable the production of green and durable structural concretes based on untreated hemp fibers.
15
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W pracy przedstawiono badania zawartości chloru w betonie i proces korozji, w oparciu o pomiary oporu przewodnictwa elektrycznego i potencjału półogniwa próbek betonowych. Te analizy opierały się na doświadczalnych pomiarach próbek w funkcji czasu zanurzenia w 3,5% roztworze NaCl w wodzie, w temperaturze pokojowej, przez 18 miesięcy, zgodnie z europejskimi normami. Przygotowano mieszanki betonowe o różnym składzie, do których dodawano inhibitor, jakim był azotan wapnia i dwa rodzaje superplastyfikatorów. Wyniki doświadczeń pokazały, że po sześciu miesiącach zanurzenia próbki miały dużą zawartość jonów chlorkowych. Próbki C4 z dodatkiem 3% inhibitora i superplastyfikatora w formie Oxydtronu, jak również C3 z tym samym dodatkiem inhibitora i superplastyfikatora MAPEI Dynamon SR 31, wykazały dobrą odporność na korozję, w stosowanym roztworze NaCl. Znalazło to również potwierdzenie w serii pomiarów przewodnictwa elektrycznego i potencjału półogniwa, przeprowadzonych po doświadczalnym okresie 18 miesięcy.
EN
This work presents a study of the total chloride contents in concrete and the corrosion process by testing electrical resistivity and half-cell potential of concrete samples. The analysis was based on an experimental investigation of the samples with the time of immersion in 3.5% mass NaCl aqueous solution at room temperature for 18 months, according to European Standards. For this study, different mixtures of concrete were prepared by adding two types of superplasticizers and calcium nitrate inhibitor, in different concentrations. The results of the Cl- ions test showed that all the samples, after an immersion testing period of six months, contained high concentrations of Cl- ions. Samples C4 with 3% calcium nitrate inhibitor and Oxydtron superplasticizer as well as C3 with 3% calcium nitrate inhibitor and Mapei Dynamon SR 31 superplasticizer, showed good resistance to corrosion, in the tested environment. It was also proved by the results of several sets of measurements of the electrical resistivity and half-cell potentials carried on the concrete test samples, to the end of the 18 months testing period.
The main objective of this study is to highlight the performance of beams composed of lightweight concrete-filled steel tubes (square and circle sections) composite with reinforced concrete deck slab. A total of nine composite beams were tested included two circular and seven square concrete-filled steel tubes. Among the nine composite beams, one beam, S20-0-2000, was prepared without a deck slab to act as a reference specimen. The chief parameters investigated were the length of the specimen, the compressive strength of the concrete slab, and the effect of the steel tube section type. All beams were tested using the three-point bending test with a concentrated central point load and simple supports. The test results showed that the first crack in the concrete deck slab was recorded at load levels ranging from 50.9% to 77.2% of the ultimate load for composite beams with square steel tubes. The ultimate load increased with increasing the compressive strength of the concrete slab. Shorter specimens were more stiffness than the other specimens but were less ductile. The slip values were equal to zero until the loads reached their final stages, while the specimen S20-55-1100 (short specimen) exhibited zero slip at all stages of the load. The ultimate load of the hollow steel tube composite beam was 13.2% lower than that of the reference beam. Moreover, the ductility and stiffness of the beam were also higher for beams with composite-filled steel tubes.
In this research, nonlinear analysis of composite shear walls (CSWs) with a gap between reinforced concrete wall and steel frame is investigated under cyclic loading by the use of the finite element method (FEM) software ABAQUS. For the purpose of the verification, an experimental test is modelled and comparison of its obtained result with that of the experimental test demonstrates an inconsiderable difference between them; therefore, the reasonable accuracy of the modelling is revealed. Then, effects of different parameters on the behaviour of the CSWs are examined. Gap size between reinforced concrete wall and steel frame, reinforcement percentage, steel sections of beams and columns, and existence of reinforced concrete wall are considered as parameters. It is concluded that change of the parameters affects the ultimate strength, ductility, and energy dissipation of the system. A steel shear wall (SSW) is also modelled and compared with the CSWs. Buckling of the walls is presented as well.
18
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper examines the experimental performance of ultra-high-performance steel fibre-reinforced concrete (UHPSFRC) beams subjected to loads at relatively low shear span-to-depth ratios. The results and observations from six tests provide a detailed insight into the ultimate response including shear strength and failure mode of structural elements incorporating various fibre contents. The test results showed that a higher fibre content results in an increase in ultimate capacity and some enhancement in terms of ductility. Detailed nonlinear numerical validations and sensitivity studies were also undertaken in order to obtain further insights into the response of UHPSFRC beams, with particular focus on the influence of the shear span-to-depth ratio, fibre content and flexural reinforcement ratio. The parametric investigations showed that a reduction in shear span-to-depth ratio results in an increase in the member capacity, whilst a reduction in the flexural reinforcement ratio produces a lower ultimate capacity and a relatively more flexible response. The test results combined with those from numerical simulations enabled the development of a series of design expressions to estimate the shear strength of such members. Validations were performed against the results in this paper, as well as against a collated database from previous experimental studies.
19
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The effects of carbon fiber and its surface treatment through chemical solutions on the mechanical properties and electromagnetic (EM) shielding of ultra-high-performance fiber-reinforced concrete (UHPFRC) were analyzed. Three types of carbon fibers chemically treated with sodium hydroxide, nitric acid, and ammonia solutions were evaluated, along with a plain carbon fiber control sample, at two different concentrations of 0.1% and 0.3% by weight. The surface of carbon fiber was oxidized by chemical solutions. The conductivity of UHPFRC increased with increasing the carbon fiber content, and slightly better conductivity was obtained using the chemically treated carbon fibers than plain fibers at the lower content of 0.1 wt%. Both steel and carbon fibers were effective at improving the shielding effectiveness of ultra-high-performance concrete, and a higher shielding effectiveness was achieved for higher carbon fiber content. Surface treatment using the nitric acid solution was the most effective at enhancing the tensile performance and EM shielding effectiveness, and the best shielding effectiveness (49.0 dB at 1 GHz) was achieved for UHPFRC with 0.1 wt% nitric acid treated carbon fibers. The shielding effectiveness was found to be generally proportional to the electrical conductivity, although its increase was minor relative to that of the conductivity.
Theoretical and experimental studies of new technology and equipment on the fulfilled cables and ropes of handling equipment are provided for diagnosis of main process. The result of the safe processing is steel fiber which is used further for production of a steel-fiber reinforced concrete. The research offered a number of essentially new diagnose methods which considerably increases engineering procedures of fiber production from waste.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.