Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  additional material
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Paper presents results of laser welding of dissimilar joints. Flange pipe joints of austenitic TP347-HFG and low carbon S235JR steels were performed. Possibility of laser girth welding of dissimilar joints was presented. Welding of dissimilar materials are complex phenomena, chemical composition of chromium and nickel base austenitic steel with carbon amount of 0.07%, comparing to low carbon steel with trace amount of chromium, nickel and with 0.17% of carbon are different, and affect on welding result. Amount of carbon and chromium have great effect on steel phase transformation and crystallization process, which affect on material hardenability and strength characteristic. In conventional GMA welding methods solidification process of different metals is controlled by use of a selected filler material, for creating buffer zone. The main advantages of laser welding over other methods is process without an additional material, nevertheless some application may require its use. Laser welding with additional material combines advantages of both methods. To carry out weld with high strength characteristic, without welding defects, selecting chemical composition of filler wire are required. Welding parameters was obtained using numerical simulation based on Finite Element Method (FEM). Joint properties was investigated using hardness test. Metallographic analysis of obtained weld was carried out using optical microscopy and energy dispersive spectroscopy (EDS) analysis.
EN
Article presents results of laser overlaying welding of metal powder Inconel 625. Laser metal deposition by laser engineered net shaping (LENS) is modern manufacturing process for low scale production series. High alloy materials such as Inconel 625 nickel based super alloy have high thermal resistant and good mechanical properties, nevertheless it's hard to machining. Plastic forming of high alloy materials such as Inconel 625 are difficult. Due to high strength characteristic performing components made from Inconel alloy are complex, selective melting of metallic powder using laser beam are alternative method for Inconel tooling. Paper present research of additive deposition of spatial structure made from Inconel 625 metallic powder with CO2 laser and integrated powder feeder. Microstructure analysis as well as strength characteristic in normal condition and at elevated temperature was performed. Possibility of using LENS technology for manufacturing components dedicated for work in high temperature conditions are presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.