Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 83

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ZnO
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
EN
Nano-ZnO/transition metal composites (NZTC) were prepared via sol-gel method where transition metal (Cu2+, Ag+, Co2+ and Ni2+) and ZnSO4 were used as the substrate. NZTC was characterized using scanning electronic microscope (SEM), ultraviolet-visible spectrophotometer (UV), fluorescence spectrophotometer (XRF), infrared spectrometer (IR), and so on. The photocatalytic degradation behaviors of nano-ZnO and NZTC for formaldehyde in gas and solution were investigated. The results indicated that nano-ZnO and NZTC could achieve the degradation of formaldehyde by photocatalytic process, and the degradation rates were up to 43.75% and 67.2% in gas and solution, respectively, thus thereby leading to good application prospects in the degradation of organic compounds.
EN
The synthesis conditions of chitosan/Arabic gum /zinc oxide nanocomposite were optimized using the Taguchi method to obtain antibacterial properties. FT-IR, XRD, FESEM, EDX, TEM, UV/VIS and TGA techniques were used to characterize the nanocomposite. Nanocomposite C3 (1 mg/mL chitosan, 4.5 mg/mL Arabic gum and 8 mg/mL zinc oxide), C7 (3 mg/mL chitosan, 5.1 mg/mL Arabic gum and 8 mg/mL zinc oxide) and C9 (3 mg/mL chitosan, 4.5 mg/mL Arabic gum and 4 mg/mL zinc oxide) had the best antibacterial properties against S. mutans. TGA showed that ZnO improved the thermal stability of the nanocomposite. Such materials can be used as antibacterial agents.
PL
Przy użyciu metody Taguchi zoptymalizowano warunki syntezy nanokompozytu chitozan/guma arabska/tlenek cynku umożliwiające uzyskanie właściwości antybakteryjnych. Do scharakteryzowania nanokompozytu zastosowano techniki FT-IR, XRD, FESEM, EDX, TEM, UV/VIS i TGA. Nanokompozyt C3 (1 mg/mL chitozanu, 4,5 mg/mL gumy arabskiej i 8 mg/mL tlenku cynku), C7 (3 mg/mL chitozanu, 5,1 mg/mL gumy arabskiej i 8 mg/mL tlenku cynku) i C9 (3 mg/mL chitozanu, 4,5 mg/mL gumy arabskiej i 4 mg/mL tlenku cynku) miał najlepsze właściwości antybakteryjne wobec S. mutans. Metodą TGA wykazano, że ZnO poprawia stabilność termiczną nanokompozytu. Tego typu materiały mogą być stosowane jako środki antybakteryjne.
3
Content available remote Wpływ warstwy ZnO na parametry pracy azotkowych laserów o emisji krawędziowej
PL
W pracy przedstawiono wyniki numerycznej analizy laserów krawędziowych na bazie azotku galu. Emiter został zaprojektowany do pracy w temperaturze pokojowej i ciągłej emisji światła zielonego (540 nm). Pokazano, że zastosowanie warstwy ZnO, jako ograniczenie optyczne po stronie p, w porównaniu z warstwą ITO, pozwala polepszyć parametry pracy lasera w połączeniu z innymi warstwami zapewniającymi efektywne ograniczenie modu od strony n. Wynika to między innymi ze znacznie niższej wartości współczynnika absorpcji materiału ZnO oraz z lepszej przewodności cieplnej ZnO w porównaniu do ITO.
EN
The paper presents the results of the numerical analysis of edge-emitting lasers based on gallium nitride. The emitter was designed for operation at room temperature and continuous emission of green light (540 nm). It is shown that the use of a ZnO layer as a p-type optical confinement, compared to an ITO layer, allows improved laser operating parameters in combination with other layers providing optical confinement on the n-side. This is due to the significantly lower value of the absorption coefficient of the ZnO material and the much better thermal conductivity of ZnO compared to ITO.
EN
Using a spray pneumatic technique, cobalt (Co) and copper (Cu) co-doped zinc oxide thin films were effectively deposited on a glass substrate. The goal of this work was to create a semiconductor with good optical and electrical properties by co-doping ZnO thin films with Cu and Co. The ZnO thin films obtained from the Co and Cu co-doping exhibit patterns of x-ray diffraction spectra that suggest they are hexagonal ZnO (wurtzite, JCPDS 36-1451). The thin film elaborated with 2 % Co and 7 % Cu has the lowest value of crystallite size (D = 14.67 nm). The transmission spectra demonstrate that all films have good optical transparency in the visible spectrum, with 7 % Cu achieving the highest transmission. Increasing Cu contents raised the band gap energy. The value at the minimum was 3.31 eV. The optical band gap’s broadening is a significant characteristic of advanced materials and may be useful in applications involving metal oxide nanostructures for visible light gas sensing.
EN
Purpose: The review focuses on chitosan nanoparticle synthesis and its biomedical applications. The review briefly explains the biomedical applications of antimicrobials, cancer therapy, gene therapy, and anti-ageing. Notably, the chitosan biological activity can be further increased by coating metal ions such as iron oxide nanoparticles, gold nanoparticles, etc. Design/methodology/approach: Chitosan is the N-acetyl derivative of chitin, which has the unique properties of biodegradability, non-toxicity, polycationic property and biocompatibility— no reports of ZnO sulphated chitosan nanoparticles being produced for antibacterial. We hope for the conduction of antibacterial research of ZnO sulphated chitosan nanoparticles. Findings: The study establishes that metal oxide nano-CH, characterised by an expanded size range beyond conventional parameters, exhibits a broad spectrum of biomedical applications. Its commendable biological attributes, encompassing biocompatibility, non-toxicity, and biodegradability, make it a vehicle for drug delivery in medicine. Research limitations/implications: Nanomedicine is an emerging branch of medicine that applies tools and the basis of nanotechnology for disease prevention, treatment and diagnosis. Moreover, it helps overcome conventional medicine's limitations, including adverse side effects, poor pharmacokinetics and lack of selectivity. Originality/value: Using chitosan extracted from marine waste presents economic advantages. Furthermore, when coated with metal oxide nanoparticles, it enhances biomedical efficacy. Chitosan is an effective drug delivery vehicle, and its theranostic applications are valuable in the biomedical sector.
EN
ZnO is an ideal material for UV detection. However, due to the surface effect of ZnO, the photosensitivity of the ZnO based UV detector needs to be improved. In this study, we deposited a hydroxyl group functionalized (3,4-propylenethiophene) polymer (PProDOT-OH) film onto a hydrothermally grown ZnO nanoarray by electro-chemical deposition method to prevent the corrosion of ZnO by phosphotungsten acid (PWA), and then PWA was drip-coated on the composite film to prepare the ZnO/PProDOT-OH/PWA composite based UV detector. The structure and morphology of the composite were characterized by SEM, UV–vis, FT-IR, XRD, Raman, EDS, XPS analysis, illustrating the phosphotungstic acid was uniformly coated on ZnO/PProDOT-OH surface and con-firming the composite was successfully synthesized. The UV detection performance was studied through preparing a UV detector with the composite material and results indicate that the introduction of PWA could enhance the responsivity of the ZnO/PProDOT-OH composite-based UV detector.
EN
In a vacuum environment, when ZnO is prepared using the chemical vapor deposition method and the molecular beam epitaxial growth method, H-gap impurities inevitably remain in the ZnO system, which is often ignored. The study of Zn vacancies under experimental conditions poses a challenge. Second, as an n-type semiconductor, ZnO is characterized by a self-compensation of natural donor defects and poor stability, which severely limit the acquisition of p-type ZnO. Based on the above problems, the conductive properties of S/Se/Te doped and VZn-Hi coexisting ZnO were investigated by first principle to acquire high-stability and high-quality p-ZnO. The study found that Zn35SO35, Zn35SeO35, and Zn35SHiO35 all have good p-type conductivity, which can effectively improve hole mobility and electrical conductivity. Among them, Zn35SO35 has the largest hole concentration at 2.80×1021 cm−3, as well as the best conductivity. The choice of Zn35SO35 provides a reference for obtaining new high-quality p-type ZnO semiconductors.
EN
The development of studies on layered double hydroxide (LDH) material as a photocatalyst for the degradation of dye pollutants continues to increase. LDH is an anionic clay, which is a natural or synthetic mixed metal hydroxide. Pristine LDH is written as M2+/M3+ LDH, (M is metal ion). This study prepared pristine Mg/Al LDH and Zn/Al LDH composited with metal oxide TiO2 and ZnO, respectively. Composite is denoted by M2+/M3+ -metal oxide. The coprecipitation method used was accompanied by calcination of the composite at a temperature 300 °C that was not high. The prepared composites were morphologically characterized by SEM. The materials that had been used until the fifth cycle of regeneration were characterized by XRD and FTIR which still indicated the presence of LDH-metal oxide composite structure. The materials degraded cationic dyes namely rhodamine-B (RhB) and methylene blue (MB). RhB degraded better than MB by pristine LDH and composites. The percent degradation of RhB for pristine Mg/Al LDH, composites Mg/Al-TiO2 and Mg/Al-ZnO were 53.1%, 59.8%, 62.8%, respectively. The percent RhB degradation for pristine Zn/Al LDH, composites Zn/Al-TiO2 and Zn/Al-ZnO were 51.4%, 58.5%, 58.9%, respectively. The percentage of degradation indicates that the LDH-metal oxide composite has succeeded in increasing the photodegradation catalytic ability and the regeneration ability of LDH pristine.
EN
In this work, zinc oxide (ZnO) thin films are deposited on glass substrate using the sol-gel spin coating technique. The effect of annealing temperature on structural properties was investigated. The ZnO sol-gel was produced from zinc acetate dehydrate as the starting material with iso-propanol alcohol as the stabilizer. The ratio was controlled, distilled water and diethanolamine as the solvent mixing on a magnetic stirrer for an hour under constant heat of 60°C. The ZnO thin film was deposited using the spin coating technique with the speed of 3000 rpm for 30 minutes before the sample undergoes pre-heat in the oven at the temperature of 100°C for 10 minutes. The sample was annealing in the furnace for an hour at 200°C, 350°C, and 500°C. The X-ray diffraction (XRD) analysis confirms that hexagonal wurtzite structure with zincite and zinc acetate hydroxide hydrate composition. The thin films surface roughness was analyzed using an atomic force microscope (AFM) and scanning electron microscope (SEM) for surface morphology observation.
EN
Zinc oxide (ZnO) is a prominent n-type semiconductor material used in optoelectronic devices owing to the wide bandgap and transparency. The low-temperature growth of ZnO thin films expands diverse applications, such as growth on glass and organic materials, and it is also cost effective. However, the optical and electrical properties of ZnO films grown at low temperatures may be inferior owing to their low crystallinity and impurities. In this study, ZnO thin films were prepared by atomic layer deposition on SiO2 and glass substrates in the temperature range of 46-141℃. All films had a hexagonal würtzite structure. The carrier concentration and electrical conductivity were also investigated. The low-temperature grown films showed similar carrier concentration (a few 1019 cm-3 at 141°C), but possessed lower electrical conductivity compared to high-temperature (>200°C) grown films. The optical transmittance of 20 nm thin ZnO film reached approximately 90% under visible light irradiation. Additionally, bandgap energies in the range of 3.23-3.28 eV were determined from the Tauc plot. Overall, the optical properties were comparable to those of ZnO films grown at high temperature.
EN
The increasing growth of the textile industry does not only provide benefits in the economic sector but also has the potential to damage the environment, because it generates the dye wastewater which is hard to eliminate. Procion red is one of the synthetic textile dyes that is toxic to the aquatic environment and it needs to be processed properly. The photocatalytic method of processing dye wastewater is the most effective, because it can remove the harmful pollutants in the dye wastewater. This study aimed to prepare and characterize the ZnO-Zeolite nanocomposites for photocatalytic applications tested with a 50 mg/L procion red dye sample. The nanocomposites consisted of the ZnO semiconductors and synthetic zeolite adsorbents prepared by using the sol-gel method. The dye degradation test was carried out under the irradiation conditions with ultraviolet (UV) lamp. Apart from the ZnO-Zeolite nanocomposite, testing was also carried out with the synthetic zeolite and ZnO. The results of SEM-EDX and XRD characterization proved that the nanocomposite forming components were ZnO and zeolite and could be seen from the resulting peaks. BET showed that the surface area value of the ZnO-Zeolite nanocomposite increased to 95.98 m2/g, the pore size of the ZnO-Zeolite nanocomposite was 4.42 nm, and the total pore volume was 0.08 cm3/g. The obtained average crystalline size of ZnO-Zeolite nanocomposite was 32.87 nm. The percentage of dye degradation using the ZnO-Zeolite nanocomposite for 120 minutes has reached 90.42%.
EN
β-Ni(OH)2/ZnO composite powders were successfully synthesized by hydrothermal method at 180 °C for 15 h whereas NiO/ZnO composite powders formed after the as-prepared powders were calcined at 800 °C for 1 h in air. The X-ray diffractometer (XRD), scanning electron microscope (SEM), UV-Vis spectrophotometer were used to characterize the phase, particle shape as well as size and optical properties, respectively. In this system, it was found that ZnO is a major phase while β-Ni(OH)2 and NiO are a minor phases. The altered particle shape of ZnO was influenced by addition of Ni(CH3COO)2ˑ6H2O whereas the particle shape of the minor phase was changed due to the calcination process. The optical band gap decreased when the amount of minor phase increased. For photocatalytic study, it was found that 6 mol% β-Ni(OH)2/ZnO composite powders exhibited the best decolorization of methylene blue aqueous solution.
14
Content available remote ZnO-based terahertz quantum cascade lasers
EN
High-power terahertz sources operating at room-temperature are promising for many applications such as explosive materials detection, non-invasive medical imaging, and high speed telecommunication. Here we report the results of a simulation study, which shows the significantly improved performance of room-temperature terahertz quantum cascade lasers (THz QCLs) based on a ZnMgO/ZnO material system employing a 2-well design scheme with variable barrier heights and a delta-doped injector well. We found that by varying and optimizing constituent layer widths and doping level of the injector well, high power performance of THz QCLs can be achieved at room temperature: optical gain and radiation frequency is varied from 108 cm−1 @ 2.18 THz to 300 cm−1 @ 4.96 THz. These results show that among II–VI compounds the ZnMgO/ZnO material system is optimally suited for high-performance room-temperature THz QCLs.
EN
Binary and ternary nanocomposites based on TiO2, SiO2 and ZnO were synthesized by PVA-based template-free gel combustion method. The morphology and the particles sizes of the synthesized samples depended on some parameters including the initial concentrations of metal salts and PVA amount in the sol, solvent composition and solution pH. Effects of these parameters were investigated and optimized by using the Taguchi method. In the experimental design, the Taguchi L25 array was used to investigate six factors at five levels. The samples were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) specific surface areas, scanning electron microscopy (SEM). The obtained results showed that the present method can be used to synthesize TiO2/SiO2/ZnO ternary nanocomposite with an effective surface area of 0.3 m2 · g−1 and ZnO/TiO2, TiO2/SiO2, ZnO/SiO2 binary nanocomposites with an effective surface area of 234 m2 · g-1, 6 m2 · g-1 and 0.5 m2 · g-1, respectively. The ZnO/TiO2 nanocomposite which was synthesized under the following experimental conditions: 2.5 wt.% Zn salt, 2.5 wt.% Ti salt, 2.0 wt.% PVA, pH = 1 and ethanol:water ratio 30:70 was selected by the Taguchi method as an optimum sample with the smallest particles (average diameter = 50 nm).
16
Content available remote Mixed structure Zn(S,O) nanoparticles: synthesis and characterization
EN
In the present work, mixed structure Zn(S,O) nanoparticles have been synthesized using solution based chemical coprecipitation technique. Two different zinc sources (Zn(CH3COO) 2·2H2O and ZnSO4·7H2O) and one sulfur source (CSNH2NH2) have been used as primary chemical precursors for the synthesis of the nanoparticles in the presence and absence of a capping agent (EDTA). The structural, morphological, compositional and optical properties of the nanoparticles have been analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transmission infra-red (FT-IR) and UV-Visible (UV-Vis) spectroscopy. XRD revealed the formation of mixed phases of c-ZnS, h-ZnS and h-ZnO in the synthesized nanoparticles. The surface morphology was analyzed from SEM micrographs which showed noticeable changes due to the effect of EDTA. EDX analysis confirmed the presence of zinc, sulfur and oxygen in Zn(S,O) nanoparticles. FT-IR spectra identified the presence of characteristic absorption peaks of ZnS and ZnO along with other functional group elements. The optical band gap values were found to vary from 4.16 eV to 4.40 eV for Zn(S,O) nanoparticles which are higher in comparison to the band gap values of bulk ZnS and ZnO. These higher band gap values may be attributed to the mixed structure of Zn(S,O) nanoparticles.
17
Content available remote Controlling of optical band gap of the CdO films by zinc oxide
EN
In this study, CdZnO films prepared at different ratios of dopants (CdO:ZnO = 5:5, CdO:ZnO = 6:4, and CdO:ZnO = 8:2) were coated on glass surface by using the sol-gel spin coating technique. After this process, surface structure and optical properties of the CdZnO films was investigated by atomic force microscopy (AFM) and UV-Vis spectroscopy. The surface structure of the CdZnO films depended on the content of ZnO and CdO in the films. Low percentage of CdO films were very similar to the ZnO film but higher amount of CdO resuted in granular structures together with pure structure of ZnO in the films. Eg values of produced CdZnOs depended on the additions of CdO and ZnO. The obtained Eg values of the produced CdO:ZnO = 5:5 (S3), CdO:ZnO = 6:4 (S4), and CdO:ZnO = 8:2 (S5) films are 2.5 eV, 2.49 eV, and 2.4 eV, respectively.
EN
In this study, an attempt was made to investigate the flame retardancy of cotton fabrics coated with a high nano-ZnO content. Via a simply method in situ, a novel ZnO/cotton composite can be fabricated with a high proportion of nano-ZnO assembled on cotton fabric, where the finished cotton fabric has a certain property of flame retardancy. Discussed herein is the effect of the processed liquid concentration, ammonia-smoking time, and curing temperature on fabric properties such as flame retardancy and hand feeling. Performed were also tests of doping boric acid using the vertical burning method. The finished cotton fabrics were analysed using X-Ray Diffrcation (XRD) and a field emission scanning electron microscope(FESEM), which indicated that between the fibres, and inside the lumen and mesopores of the cotton fibres are assembled with nano-ZnO. The results show that the nano-ZnO content on cotton fabrics can reach up to 15.63 wt%, with the finished cotton fabric having excellent flame retardancy, despite the long after-glow time; however, doping with 0.8 wt% boric acid on the cotton fabric can markedly reduce this. Therefore, a high amount of nano-ZnO doped with boric acid assembled on cotton fabric has great potential in the future.
PL
W pracy podjęto próbę zbadania ognioodporności tkanin bawełnianych pokrytych nano-ZnO. Omówiono wpływ przetworzonej cieczy, stężenie, czas palenia amoniaku i temperaturę utwardzania (wulkanizacji) na właściwości tkaniny bawełnianej, takie jak: ognioodporność i chwyt. Wykonano również analizę kwasu borowego metodą pionowego spalania. Gotowe tkaniny bawełniane analizowano za pomocą dyfrakcji rentgenowskiej (XRD) i skaningowego mikroskopu elektronowego z emisją polową (FESEM), które wskazywały, że między włóknami oraz w lumenach i mezoporach włókien bawełnianych zgromadził się nano-ZnO. Wyniki pokazują, że zawartość nano-ZnO na tkaninach bawełnianych może dochodzić do 15,63% wag., Przy czym gotowa tkanina bawełniana ma doskonałą ognioodporność, pomimo długiego czasu po żarzeniu, jednak dodanie 0,8% wag. kwasu borowego może to znacznie zmniejszyć. Stwierdzono, że zastosowanie nano-ZnO z kwasem borowym na tkaninie bawełnianej ma ogromny potencjał do zastosowania w przyszłości.
EN
Constantly developing nanotechnology provides the possibility of manufacturing nanostructured composites with a polymer matrix doped with ceramic nanoparticles, including ZnO. A specific feature of polymers, i.e. ceramic composite materials, is an amelioration in physical properties for polymer matrix and reinforcement. The aim of the paper was to produce thin fibrous composite mats, reinforced with ZnO nanoparticles and a polyvinylpyrrolidone (PVP) matrix obtained by means of the electrospinning process and then examining the influence of the strength of the reinforcement on the morphology and optical properties of the composite nanofibers. The morphology and structure of the fibrous mats was examined by a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS) and Fourier-transform infrared spectroscopy (FTIR). UV –Vis spectroscopy allowed to examine the impact of zinc oxide on the optical properties of PVP/ZnO nanofibers and to investigate the width of the energy gap.
EN
Among the large family of metallic oxides, there is a considerable group possessing excellent semiconducting properties. What follows, they are promising materials for applications in the field of optoelectronics and photonics. Thanks to the development of nanotechnology in the last few decades, it is now possible to manufacture a great variety of different nanostructures. By controlling their size, shape, composition and crystallinity, one can influence such properties as band gap, absorption properties, surface to volume ratio, conductivity, and, as a consequence, tune the material for the chosen application. The following article reviews the research conducted in the field of application of the metallic oxide nanoparticles, especially ZnO, TiO2 and ITO (Indium-Tin Oxide), in such branches of optoelectronics as solid-state lightning, photodetectors, solar-cells and transparent conducting layers.
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.