Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Major Depressive Disorder
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
According to the World Health Organization, the Global Mental Health Report estimated that between 251 and 310 million individuals worldwide experienced depression during the first year of the COVID-19 pandemic. Most methods for detecting depression rely on clinical diagnoses and surveys. However, the American Psychiatric Association reports that over 50% of patients do not receive appropriate treatment. This study aims to utilize machine learning and pupil diameter features to identify depression and evaluate the accuracy of these classifiers in comparison to our previous deep learning model. While limited research has explored the use of pupillary diameter as a classification tool for distinguishing between individuals with and without depression, several studies have focused on EEG signals for this purpose. The study involved 58 participants, with 29 classified as depressed and 29 as healthy. The classification was based on statistical features extracted from the Hilbert-Huang Transform. Results showed a significant improvement in average accuracy compared to the authors’ prior work, with the current study achieving 77.72% accuracy, compared to 64.78% in their previous research. Machine learning methods, particularly Bagging, outperformed deep learning models such as AlexNet when classifying data from the left and right eyes individually (90.91% vs. 78.57% for the left eye; 90.91% vs. 71.43% for the right eye). However, when combining data from both eyes, deep learning using AlexNet demonstrated superior performance (98.28% accuracy compared to 93.75% using Bagging with statistical features from both eyes). Despite the higher accuracy of deep learning, machine learning is recommended for its faster execution times.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.