The decarbonisation of transport is one of the key aspects in the context of environmental protection. These emissions are particularly noticeable in highly urbanised areas, where the possibility of dispersal of harmful substances is much lower. A way to improve emission factors is the introduction of hydrogen vehicles. Burning hydrogen in engines significantly reduces emissions of harmful substances into the atmosphere compared to the combustion of conventional fuels used today. Hydrogen can be obtained by gasifying waste in a steam atmosphere. Electronic waste is a special type of waste characterised by a high degree of commingling, which makes it difficult to treat. The volume of this type of waste is increasing year on year. As a result of this process, we are able to obtain syngas. This gas, after separation processes, can be a source of hydrogen, an energy carrier that could prove crucial in low-carbon energy or transport applications. This paper presents the results of the gasification of electronic waste, the composition of the syngas obtained in the process and an assessment of the potential of this waste treatment technology to power means of transport.
Syngas has a promising future as alternative to petroleum products and as a fuel for combustion engines. This study provides an overview on the feasibility of using syngas to power internal combustion engines. It presents technological process solutions for producing syngas toward minimizing the formation of tars as the most undesirable component for engine applications.. The combustion process characteristic of syngas composition has been tackled including critical criteria such as the flammability limit, ignition delay, laminar velocity, turbulent velocity, and the subsequent challenges in determining a numerical methods that best matches the experimental datas. The syngas usage as alternative resource, while tackling the uncertainty issue of its composition, for Compression Ignition (CI) and Spark Ignition (SI) with the emission and performance effectiveness has been studied as well. The results of the review showed that syngas can be a viable alternative for some stationary applications, such as advanced integrated systems (ICCG), but its application is, however, relatively limited, for example as a secondary fuel in engines (CI) for automotive applications. However, significant discrepancies between numerical (simulation) and experimental results have been noted. This suggests that there are many scientific and experimental challenges in the area of syngas combustion processes in internal combustion engines. However, given the potential of this group of fuels, especially in the face of the energy crisis, this research is highly desirable and has a significant application perspective.
The study presents the results of research related to the use of B75 biofuel to power compression ignition engines, which can be used in transport and agriculture. The biofuel is composed of fatty acid ethyl esters produced from rapeseed oil and waste vegetable fats in the process of ethanol transesterification and dehydrated bioethanol, with the addition of standard diesel oil (approx. 25%). The physical and chemical properties of the 3-component biofuel were determined in laboratory conditions, and its composition was enriched with additives, allowing the use of the biofuel in a wide range of ambient temperatures. The efficiency of engines fuelled with multi-component biofuel and the emission of toxic substances in exhaust gases were measured in laboratory conditions (engine dynamometer), as well as in the natural operation of vehicles used in transport (delivery vehicles). The results of the conducted research prove that the B75 biofuel can successfully replace the standard mineral diesel oil and may constitute the basis for the development of the B100 fuel composed of ethyl esters and ethanol.
PL
Opracowanie przedstawia efekty badań związanych z zastosowaniem biopaliwa B75 do zasilania silników o zapłonie samoczynnym, które może być wykorzystywane m.in. w transporcie i w rolnictwie. Biopaliwo skomponowane jest na bazie estrów etylowych wyższych kwasów tłuszczowych wytworzonych z oleju rzepakowego oraz odpadowych tłuszczów roślinnych w procesie transestryfikacji z bioetanolem i odwodnionego bioetanolu, z dodatkiem standardowego oleju napędowego (ok. 25%). Właściwości fizykochemiczne wytworzonego 3-komponentowego biopaliwa zostały określone w warunkach laboratoryjnych, a jego skład został wzbogacony dodatkami uszlachetniającymi, pozwalającymi stosować biopaliwo szerokim zakresie temperatury otoczenia. Efektywność pracy silników zasilanych wielokomponentowym biopaliwem oraz emisję substancji toksycznych w spalinach określono w warunkach laboratoryjnych (hamownia silnikowa), a także w naturalnej eksploatacji pojazdów wykorzystywanych w transporcie (pojazdy dostawcze). Wyniki przeprowadzonych badań dowodzą, że biopaliwo B75 może z powodzeniem zastąpić standardowy mineralny olej napędowy i stanowić może bazę do opracowania paliwa B100 złożonego z estrów etylowych i etanolu.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.