Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Monte Carlo Study of Triblock Self-Assembly by Cooperative Motion Algorithm
EN
We perform a comprehensive Monte Carlo study of the ABA triblock self-assembly by the Cooperative Motion Algorithm. Our attention is focused on three series of triblocks which are grown from parent AB diblocks of varying asymmetry. Unlike the previous studies in which the total length of the chain varies upon growing the terminal A-block, here we keep the fixed chain length for a given series. Moreover, we determine the order-disorder transition temperature as the τ parameter (being the ratio of the grown A-block to the length of the parent diblock) increases. In this case we find that the order-disorder transition temperature monotonically decreases for two asymmetric series which is different from the non-monotonic depression of TODT reported previously. We also construct a phase diagram which shows a variety of nanostructures as τ is increased.
EN
Using the Self-Consistent Field Theory (SCFT) we study the dual self-assembly of ABA triblock copolymers melts and compare the numerical results with those obtained by the lattice Monte Carlo simulations. While the results are qualitatively similar for both methods, the simulation times are significantly shorter for the SCFT calculations than those for the corresponding Monte Carlo simulations
EN
Using two complementary numerical methods, the lattice Monte Carlo simulations with parallel tempering and self-consistent field theory, we investigate the distribution of A1, B, and A2 segments in the lamellar nanostructure of A1BA2 triblock copolymer melts. While the lattice Monte Carlo method is in principle exact, it is limited by a variety of factors, such as finite size effects, long relaxation times required to reach the thermal equilibrium and geometry of the underlying lattice. It is also limited to chains consisting of relatively few segments. The self-consistent field theory, on the other hand, is free of the above limitations, but it is a mean-field approach which does not take into account the thermal fluctuations. Therefore we confront the results obtained from the two above methods and draw conclusions concerning both the comparison of the two methods and the localization of the A1 segments in the B domain with increasing length of the A1 block. For Monte Carlo simulations we employ two types of chains, 2-32-30 and 1-16-15, and for the self-consistent field theory we use the corresponding values of the thermodynamic incompatibility parameter, c/v.
PL
Teorię samozgodnego pola średniego i symulacje Monte Carlo wykorzystano do oceny dystrybucji segmentów A1, B i A2 w strukturach warstwowych. Porównano wyniki uzyskane za pomocą tych dwóch metod i przedstawiono wnioski dotyczące zmian lokalizacji segmentów A1 w domenie B wraz ze zwiększaniem długości bloków A1.
EN
Lattice computer simulations of block copolymer melts are reported. Low-temperature lamellar ordering conjecture is presented and its justification is provided. In addition to reviewing the previous data we present a new evidence for the extra ordering effects by recording the mean squared rotational angles as a function of the reduced temperature.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.