Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Learning vector quantization (LVQ) is one of the most powerful approaches for prototype based classification of vector data, intuitively introduced by Kohonen. The prototype adaptation scheme relies on its attraction and repulsion during the learning providing an easy geometric interpretability of the learning as well as of the classification decision scheme. Although deep learning architectures and support vector classifiers frequently achieve comparable or even better results, LVQ models are smart alternatives with low complexity and computational costs making them attractive for many industrial applications like intelligent sensor systems or advanced driver assistance systems. Nowadays, the mathematical theory developed for LVQ delivers sufficient justification of the algorithm making it an appealing alternative to other approaches like support vector machines and deep learning techniques. This review article reports current developments and extensions of LVQ starting from the generalized LVQ (GLVQ), which is known as the most powerful cost function based realization of the original LVQ. The cost function minimized in GLVQ is an soft-approximation of the standard classification error allowing gradient descent learning techniques. The GLVQ variants considered in this contribution, cover many aspects like bordersensitive learning, application of non-Euclidean metrics like kernel distances or divergences, relevance learning as well as optimization of advanced statistical classification quality measures beyond the accuracy including sensitivity and specificity or area under the ROC-curve. According to these topics, the paper highlights the basic motivation for these variants and extensions together with the mathematical prerequisites and treatments for integration into the standard GLVQ scheme and compares them to other machine learning approaches. For detailed description and mathematical theory behind all, the reader is referred to the respective original articles. Thus, the intention of the paper is to provide a comprehensive overview of the stateof- the-art serving as a starting point to search for an appropriate LVQ variant in case of a given specific classification problem as well as a reference to recently developed variants and improvements of the basic GLVQ scheme.
EN
An increasing number of known RNA 3D structures contributes to the recognition of various RNA families and identification of their features. These tasks are based on an analysis of RNA conformations conducted at different levels of detail. On the other hand, the knowledge of native nucleotide conformations is crucial for structure prediction and understanding of RNA folding. However, this knowledge is stored in structural databases in a rather distributed form. Therefore, only automated methods for sampling the space of RNA structures can reveal plausible conformational representatives useful for further analysis. Here, we present a machine learning-based approach to inspect the dataset of RNA three-dimensional structures and to create a library of nucleotide conformers. A median neural gas algorithm is applied to cluster nucleotide structures upon their trigonometric description. The clustering procedure is two-stage: (i) backbone- and (ii) ribose-driven. We show the resulting library that contains RNA nucleotide representatives over the entire data, and we evaluate its quality by computing normal distribution measures and average RMSD between data points as well as the prototype within each cluster.
EN
Classification is one of the most frequent tasks in machine learning. However, the variety of classification tasks as well as classifier methods is huge. Thus the question is coming up: which classifier is suitable for a given problem or how can we utilize a certain classifier model for different tasks in classification learning. This paper focuses on learning vector quantization classifiers as one of the most intuitive prototype based classification models. Recent extensions and modifications of the basic learning vector quantization algorithm, which are proposed in the last years, are highlighted and also discussed in relation to particular classification task scenarios like imbalanced and/or incomplete data, prior data knowledge, classification guarantees or adaptive data metrics for optimal classification.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.