Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the pursuit of advancing the surface machining efficiency of Ti-6Al-4V material through magnetic polishing, this study introduces a new approach methodology. A novel approach integrates Magneto-Rheological Finishing (MRF) into a circulating system, employing a circular Halbach array to ensure a continuous and uniform flow of magnetic abrasives. Employing simulation and theoretical analysis, MRF polishing processes with the fluid dynamics of abrasive (SiO2) and magnetic particles (Fe3O4) during the finishing process of Ti-6Al-4V material using a circulating conveyor designed for the regeneration of abrasive particles. To investigate the impact of magnetic fluid distributions influenced by magnetic fields on the machining process, we meticulously conduct experimental analyses. The findings underscore that diminishing the working distance results in an expanded distribution range of magnetic abrasive fluid on the conveyor belt. Consequently, this induces a noteworthy variation in impact positions on the workpiece surface, leading to an increased exposed area. A pivotal outcome of this study is the observed augmentation in machining quality and efficiency. Remarkably, the surface roughness of the Ti-6Al-4V workpiece undergoes a substantial improvement, diminishing from an initial Ra = 431.1 nm to an impressive Ra = 39.6 nm within a 30-minute timeframe.
EN
A new eco-friendly slurry has been developed for the chemical mechanical polishing process with a solution of malic acid, deionized water, and an oxidizing agent hydrogen peroxide (H2O2). The surface quality of Ti-6Al-4V workpieces with the proposed chemical mechanical polishing slurry with optimal parameters include oxidizers (H2O2), colloidal (SiO2) slurry, and deionized water by weight 8%, 45%, and 47% respectively, the pH concentration is adjusted 4 through the malic acid content present in the slurry. Experimental results obtained with the proposed chemical mechanical polishing method show a more improved surface quality than previous studies when applying for polishing Ti-6Al-4V alloy. The developed chemical mechanical polishing method's polishing results under optimal conditions obtain an ultra-fine surface quality with Ra = 0.696 nm over a measuring area of 53×70 μm2. X-ray photoelectron (XPS) and electrochemical measurements were used to study the chemical reaction mechanisms in the proposed chemical mechanical polishing process. The chemical mechanical polishing processes for the surface of the Ti-6Al-4V alloy workpiece with the H2O2 oxidizing agent showed high suitability with the reactants formed on the surface such as Ti, V, and Al oxide. With the proposed oxidant and the established chemical mechanical polishing slurry, the feasibility and surface quality of the super smooth Ti-6Al-4V workpiece formed after polishing were demonstrated. The established chemical mechanical polishing method shows high applicability in environmental protection and Ti-6Al-4V alloy ultra-precision machining industries.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.