PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Correlation between dynamic material behavior and adiabatic shear phenomenon for quenched and tempered steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Besides the common failure mechanism based on crack propagation, adiabatic shear failure results from a collapse mechanism, mainly at high deformation rates. This failure incorporates locally extreme high shear strains, but due to the small volume involved, it transpires in macroscopic brittle manner. This paper deals with the description of the influence of material properties on adiabatic shear failure. In the literature, much information can be found, which supports the theory that some material properties in?uence the occurrence of adiabatic shear failure behavior in a positive or negative manner. The determination of propensity for the investigated steels was done through special biaxial dynamic compression-shear-test in a drop weight tower. The failure achieved in the test is only material-dependent. Furthermore, it was found, that the theory of Culver with the competing processes of work hardening and thermal softening is transferable on the tested materials in a qualitative manner. Additionally, it was determined that few material properties have a strong controlling e?ect on the adiabatic shear failure behavior and it is possible to determine a critical value for transition between sheared and non sheared areas. Moreover, it could define a functional correlation of the failed materials to certain properties. As a main result, the most important material property is the dynamic compression behavior at high temperature. The stress level of the material and the characteristic in dependence of temperature is decisive. Analytical considerations using high temperature behavior patterns confirm this influence. Additionally, hardness and strength at room temperature and the pure shear capability (hat-shaped specimen) are also important for the evaluation of adiabatic failure behavior.
Słowa kluczowe
EN
PL
Rocznik
Strony
67--84
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
autor
autor
  • Nordmetall GmbH, Hauptstrasse 16, D-09221 Adorf / Erzg., Gmd. Neukirchen
Bibliografia
  • 1. H. Tresca, Sur la fluideite et l´ecoulement des corps solides, Annales du conservatoire des arts et metiers, 41, XI 1er fasc., 153–160, 1879.
  • 2. C. Zener, J. H. Hollomon, Effect of strain rate upon plastic flow of steel, Journal of Applied Physics, 15, 22–32, 1944.
  • 3. H. C. Rogers, Adiabatic shearing-general nature and material aspects, Material behavior under high stress and ultra-high loadings rates, 29th Sagamore Army Materials Conf., J. Mescall and V. Weiss [Eds.], Plenum Press New York, Drexel University, Department of materials engineering, 101–118, 1983.
  • 4. R. Dormeval, The adiabatic shear phenomenon, Materials at high strain rates, Elsevier Applied Science, T.Z. Blazynski [Ed.], 47–69, 1987.
  • 5. Y. Xu, J. Zhag, Y. Bai, M. A. Meyers, Shear localization in dynamic deformation: micro- structural evolution, Metallurgical and Materials Transactions A, 39A, 811–843, 2008.
  • 6. R. Dormeval, The adiabatic shear phenomena, Impact loading and dynamic behavior of materials, Vol. 1, C. Y. Chiem, H. D. Kunze, L. W. Meyer [Eds.], DGM Informationsgesellschaft, Verlag, 43–56, 1988.
  • 7. X. B. Wang, Adiabatic shear localization for steels based on Johnson-Cook-Model and second- and fourth-order gradient plasticity models, Journal of Iron and Steel Research, International, 14, 56–61, 2007.
  • 8. T. Pintat, B. Scholz, H. D. Kunze, O. Vohringer ¨ , The influence of carbon content and grain size on energy consumption during adiabatic shearing, Journal de Physique, C3, 9, 49, 237–244, 1988.
  • 9. M. Edwards, Properties of metals at high rates of strain, Materials Science and Technology, 22, 4, 453–462, 2006.
  • 10. J. F. Mescall, On the relative roles of strain-hardening and thermal softening in ASB, Mechanical Engineering, Metallurgical application of shock-wave and high-strain-rate phenomena, 52, 689–704, 1986.
  • 11. J. Barry, G. Byrne, Chip formation, acoustic emission and surface white layers in hard machining, Annals of the CIRP, 51, 65–70, 2002.
  • 12. A. J. Bedford, A. L. Wingrove, K. R. L. Thompson, The phenomenon of adiabatic shear deformation, Journal of the Australian Institute of Metals, 19, 1, 61–73, 1974.
  • 13. Y. Meunier, R. Rouy, J. Moureaud, Survey of adiabatic shear phenomena in armor steels with perforation, Shock-wave and high strain rate phenomena in metals, 637–644, 1992.
  • 14. A. G. Odeshi, S. Al-Ameeri, M. N. Bassim, Effect of high strain rate on plastic deformation of a low alloy steel subjected to ballistic impact, Journal of Materials Processing Technology, 162–163, 385–391, 2005.
  • 15. J. M. Yellup, R. L. Woodward, Investigaion into the prevention of adiabatic shear failure in high strength armour materials, Res. Mechanica, 1, 41–57, 1980.
  • 16. P. R. Guduru, A. J. Rosakis, G. Ravichandrian, Dynamic shear bands: an investigation using high speed optical and infrared diagnostics, Mechanics of Materials, 33, 371–402, 2001.
  • 17. A. Sabih, A. M. Elwazri, J. A. Nemes, S. Yue, A workability criterion for the transformed ASB phenomena during cold heading of 1038 steel, Journal of Failure and Prevention, 6, 97–105, 2006.
  • 18. N. Herzig, Erfassung und Beschreibung des skalierten Fließ-, Verfestigungs- und Versagensverhalten ausgew¨ahlter metallischer Werkstoffe, Dissertation, Schriftenreihe Band 004 Werkstoffverhalten, TU Chemnitz, Professur Werkstoffe des MB, 2008.
  • 19. Z. G. Wang, G. Rittel, Thermomechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys, Mechanics of Materials, 40, 8, 629–635, 2008.
  • 20. Y. Bai, B. Dodd, Adiabatic shear localization; Occurrence, theories and applications, Pergamon press, Oxford, 1992.
  • 21. E. Hanina, D. Rittel, Z. Rosenberg, Pressure sensitivity of adiabatic shear banding in metals, Applied physics letters, American institute of physics, 90, 021915-1–021915-4, 2007.
  • 22. R. S. Culver, Thermal instability strain in dynamic plastic deformation, Metallurgical effects at high strain rates, 519–529, 1973.
  • 23. R. F. Recht, Catastrophic thermoplastic shear, Journal of Applied Materials, Transactions of the ASME, 189–193, 1964.
  • 24. H. C. Rogers, Adiabatic plastic deformation, Ann. Rev. Mater. Sci., 9, 283–311, 1979.
  • 25. M. A. Meyers, Dynamic behavior of materials, Wiley-Interscience Publication; John Wiley and Sons, Inc., New York, 1994.
  • 26. R. J. Clifton, Material Response to ultra-high loadings rates, Rep. NMAB - 356, NMAB, NAS, Washington, DC, Ch. 8, 1979.
  • 27. T. W. Wright, The physics and mathematics of ASB, Cambridge University Press, 2002.
  • 28. M. A. Meyers et al., Microstructural evolution in adiabatic shear localization in stainless steel, Acta Materialia, 51, 1307–1325, 2003.
  • 29. M. R. Staker, The relation between adiabatic shear instability strain and material properties, Acta Metallurgica, 29, 683–689, 1981.
  • 30. J. R. Klepaczko, Remarks on impact shearing, Journal of Mechanics, Physics and Solids, 46, 10, 2139–2153, 1998.
  • 31. L. L. Wang, H. S. Bao, W. X. Lu, The dependence of ASB in strain-rate, strain and temperature, Journal de Physique, C3, 3, 49, 207–214, 1988.
  • 32. D. E. Grady, Dissipation in adiabatic shear bands, Mechanics of Materials, 17, 289–293, 1994.
  • 33. L. W. Meyer, L. Kruger ¨ , Shear testing with hat specimen, ASM Handbook, Mechanical Testing and Evaluation, ASM International, Materials Park, Ohio, 8, 451–452, 2000.
  • 34. J. F. Kalthoff, Modes of dynamic shear failure in solids, International Journal of Fracture, 101, 1–31, 2000.
  • 35. L. W. Meyer, L. Kruger, S. Abdel–Malek ¨ , Adiabatische Schervorg¨ange, Materialpr¨ufung, 41, 31–35, 1999.
  • 36. L. W. Meyer, E. Staskewitsch, A. Burblies, Adiabatic shear failure under biaxial dynamic compression/shear loading, Mechanics of Materials, 17, 203–214, 1994.
  • 37. L. W. Meyer, L. Kruger ¨ , Drop-weight compression shear testing, ASM Handbook, Mechanical Testing and Evaluation, ASM International, Materials Park, Ohio, 8, 452–454, 2000.
  • 38. X. Sun, W. Liu, W. Chen, D. Templeton, Modeling and characterization of dynamic failure of borosilicate glass under compression/shear loading, Int. Journal of Impact Engineering, 36, 226–234, 2009.
  • 39. L. W. Meyer, E. Staskewitsch, Adiabatic shear failure of the titanium alloy Ti6Al4V under biaxial dynamic compression/shear loading, Shock Waves and high-strain-rate phenomena in metals, 1939–1946, 1992.
  • 40. K. H. Hartmann, H. D. Kunze, L. W. Meyer, Metallurgical effects on impact loaded materials, Shock waves and high strain rate phenomena in metals, concepts and applications, Plenum Press New York, 325–337, 1981.
  • 41. J. R. Klepaczko, B. Rezaig, A numerical study of ASB in mild steel by dislocation mechanics based constitutive relations, Mechanics of Materials, 24, 125–139, 1996.
  • 42. H. Feng, M. N. Bassim, Finite element modeling of the formation of ASB in AISI 4340 steel, Material Science and Engineering, A266, 255–260, 1999.
  • 43. L. W. Meyer, S. Manwaring, Critical adiabatic shear strength of low alloyed steel under compressive load, Metallurgical applications of shock-wave and high-strain-rate phenomena, 657–674, 1986.
  • 44. L. W. Meyer, Adiabatic shear failure at biaxial dynamic compression/shear loading, Euromech, 282, 1991.
  • 45. S. N. Medyanik, W. K. Liu, S. Li, On criteria for dynamic adiabatic shear band propagation, Journal of the Mechanics and Physics of Solids, 55, 1439–1461, 2007.
  • 46. L. E. Murr, Applications of extreme deformation, Materials Technology, 22, 4, 193–199, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0055-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.