PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Terahertz photomixer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper gives a review of continuous wave optical devices called THz photomixers used for excitation and detection of the terahertz radiation. Possible structures of the terahertz photomixers are classified and described.
Rocznik
Strony
463--470
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • Department of Electronics, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland, edward.plinski@pwr.wroc.pl
Bibliografia
  • [1] J.M. Byrd, W. Leemans, A. Loftsdottir, B. Marcelis, M.C. Martin, W.R. McKinney, F. Sannibale, T. Scarvie, and C. Steier, “Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring”, Phys. Rev. Lett. 89, 224801–5 (2002).
  • [2] J.M. Byrd, Michael C. Martin, W.R. McKinney, D.V. Munson, H. Nishimura, D.S. Robin, F. Sannibale, R.D. Schlueter, W.G. Thur, J.Y. Jung, and W. Wan, “CIRCE: a dedicated storage ring for coherent THz synchrotron radiation”, Infrared Physics & Technology 45, 325–330 (2004).
  • [3] E. Karantzoulis, G. Penco, A. Perucchi, and S. Lupi, “Coherent THz radiation at ELETTRA”, Proc. EPAC08 1, CD-ROM (2008).
  • [4] M. Tecimer, L.C. Brunel, and J. van Tol, “A designed study of a FIR/THZ FEL for high magnetic field”, Proc. FEL 1, CD-ROM (2006).
  • [5] B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, “Terahertz BWOspectrosopy”, Int. J. Infrared and Millimeter Waves 26 (9), 1217–1240 (2005).
  • [6] G. Kube, H. Backe, W. Lauth, and H. Schoepe, “Smith-Purcell radiation in view of particle beam diagnostic”, Proc. DIPAC 1, CD-ROM (2008).
  • [7] M. Mukherjee and N. Mazumder, “Photo-illuminated InP Terahertz IMPATT device”, Indium Phosphide & Related Materials, 19th IEEE Int. Conf. 1, CD-ROM (2008).
  • [8] N. Karpowicz, H. Zhong, C. Zhang, K.-I Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications”, Appl. Phys. Lett. 86, 054105 (2005).
  • [9] S.C. Zerbetto, L.R. Zink, K.M. Evenson, and E.C.C. Vasconcellos, “Frequency measurements of 3 to 11 THz laser lines of CH3OH”, Int. J. Infrared and Millimeter Waves 17 (6), 1049–1054 (2005).
  • [10] D. Mittleman, Sensing with THz Radiation, Springer, Berlin, 2003.
  • [11] E.R., Brown, K.A., McIntosh, K.B Nichols, and C.L Dennis, “Photomixing up to 3.8 THz in low-temperature-grown GaAs”, Appl. Phys. Lett. 66, 285–287 (1994).
  • [12] A.A. Kosterev, R.F. Curl, and F.K. Tittel, “Chemical sensors using quantum cascade lasers”, Laser Physics 11, 39–49 (2001).
  • [13] A.A. Kosterev and F.K. Tittel, “Chemical sensors based on quantum cascade lasers”, IEEE J. Quant. Electron. QE-38 (6), 582–591 (2002).
  • [14] G. Wysocki, R. Lewicki, R.F. Curl, F.K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing”, Appl. Physics B: Lasers and Optics 92, 305 (2008).
  • [15] M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fischer, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation” , Appl. Physics Letters 92, 201101 (2008).
  • [16] D. Sands, Diode Lasers, Taylor & Francis; London, 2004.
  • [17] A. Klehr, J. Fricke, A. Knauer, G. Erbert, M. Walther, R. Wilk, M. Mikulics, and M. Koch, “High-power monolithic two-mode DFB laser diodes for the generation of THz radiation”, IEEE J. Sel. Top. Quant. Electron. 14 (2), 289–294 (2008).
  • [18] S. Kiyomi, “Terahertz optoelectronics”, Series: Topics in Applied Physics 97, 1–400 (2005).
  • [19] P. Kordoˇs, M. Marso, and M. Mikulics, “Performance optimization of GaAs-based photomixers as sources of THz radiation”, Appl. Phys. A 87, 563–567 (2007).
  • [20] D.H. Auston, K.P. Cheung, and P.R. Smith, “Picosecond photoconductive Hertzian dipoles”, Appl. Phys. Lett. 45, 284–286 (1984).
  • [21] Th. Pfeiffer, J. Kuhl, M. Serenyi, H.-U. Habermeier, E.0. Gobel, L. Palmetshofer, and A. Axmann, “Picosecond optoelectronic switches”, Physica Scripta. T13, 100–103 (1986).
  • [22] P.R. Smith, D.H. Auston, and M.C. Nuss, “Subpicosecond photoconducting dipole antennas”, IEEE J. Quant. Electron. QE-24 (2), 255–260 (1988).
  • [23] E.F. Plinski, R. Wilk, and M. Mikulics, “Terahertz optical mixer design”, Phot. Lett. Pol. 1 (1), 28–30 (2009).
  • [24] U. Willer, R. Wilk, W. Schippers, S. B¨ottger, D. Nodop, T. Schossig, W. Schade1, M. Mikulics, M. Koch, M. Walther, H. Niemann, and B. G¨uttler, “A novel THz source based on a two-color Nd:LSB microchip-laser and a LT-GaAsSb photomixer”, Appl. Phys. B: Lasers and Optics 87 (1), 13–16 (2007).
  • [25] S. Hoffmann, M. Hofmann, E. Br¨undermann, M. Havenith, M. Matus and J.V. Moloney, A.S. Moskalenko, M. Kira, S.W. Koch, S. Saito, and K. Sakai, “Four-wave mixing and direct terahertz emission with two-color semiconductor lasers”, Appl. Phys. Lett. 84 (18), 3585–3587 (2004).
  • [26] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T.W. Hansch, L. Pasquini, A. Manesceau, S. Odorico, M.T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations”, Science 321, 1335–1337 (2008).
  • [27] M. Tani, O. Morikawa, S. Matsuura, and M. Hango, “Generation of terahertz radiation by photomixing with dual- and multiple-mode lasers”, Sem. Sc. Tech. 20, S151–S163 (2005).
  • [28] M. Scheller and M. Koch, “Terahertz quasi time domain spectroscopy”, Opt. Expr. 17, 17723–17733 (2009).
  • [29] K. Shibuya, M. Tani, M. Hangyo, O. Morikawa, and H. Kan, “Compact and inexpensive continuous-wave subterahertz imaging system with a fiber-coupled multimode laser diode”, Appl. Phys. Lett. 90, 161127 (2007).
  • [30] T. Suzuki, N. Hido, X. Zhao, and O. Sasaki, „Dual-color operation of a laser diode under current and temperature control”, Appl. Opt. 42 (33), 6640–6644 (2003).
  • [31] M.A. Belkin, F. Capasso, F. Xie, A. Belyanin, M. Fisher, A. Wittmann, and J. Faist, “Room temperature terahertz quantum cascade laser source based on intracavity differencefrequency generation”, Appl. Phys. Lett. 92, 201101–3 (2008).
  • [32] Y.D. Gong, M.Y.W. Chia, and B. Luo, “Terahertz spectroscopy technology trend using 1550-nm ultrafast fiber laser”, Micr. Opt. Tech. Lett. 49, 439–443 (2007).
  • [33] G. Mouret , S. Matton, R. Bocquet, D. Bigourd, F. Hindle, A. Cuisset, J.F. Lampin, K. Blary, and D. Lippens, “THz media characterization by means of coherent homodyne detection, results and potential applications”, Appl. Phys. B: Lasers and Optics 89 (2–3), 395–399 (2007).
  • [34] O. Morikawa, M. Tonouchi, and M. Hangyo, “Sub-THz spectroscopic system using a multimode laser diode and photoconductive antenna”, Appl. Phys. Lett. 75, 3772–3774 (1999).
  • [35] S. Latkowski, F. Surre, and P. Landais, “Terahertz wave generation from a dc-biased multimode laser”, Appl. Phys. Lett. 92, 081109 (2008).
  • [36] S. Latkowski, F. Surre, R. Maldonado-Basilio, and P. Landaisa, “Investigation on the origin of terahertz waves generated by dcbiased multimode semiconductor lasers at room temperature”, Appl. Phys. Lett. 93, 241110 (2008).
  • [37] N. Kim, J. Shin, E. Sim, C.W. Lee, D-S. Yee, M.Y. Jeon, Y. Jang, and K.H. Park, “Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation”, Opt. Expr. 17, 13851–13859 (2009).
  • [38] J.S. Witkowski, P. Jarząb, K. Nowak, R. Wilk, M. Mikulics, and E.F. Pliński, “Fourier transform in THz measurements of refractive index”, IRMMW-THz, 34th Int. Conf. on Infrared, Millimeter, and Terahertz Waves 1, CD-ROM (2009).
  • [39] C. Jastrow, K. M¨unter, R. Piesiewicz, T. K¨urner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system”, Electr. Lett. 44 (3), 214–215 (2008).
  • [40] Q. Guo, Y. Kume, Y. Fukuhara, T. Tanaka, M. Nishio, H. Ogawa, M. Hiratsuka, M. Tani, and M. Hango, „Observation of ultra-broadband terahertz emission from ZnTe films grown by metaloganic vapor epitaxy”, Solid State Communications 141, 188–191 (2007).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPG8-0039-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.