PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nanostructures with Ge–Si quantum dots for infrared photodetectors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper questions of optimization of growth conditions in the method of molecular beam epitaxy for creation of high-efficient quantum dot infrared photodetectors are considered. As a model material system for theoretical investigations, heterostructures with germanium-silicon quantum dots on the silicon surface are chosen. For calculations of the dependencies of quantum dots array parameters on synthesis conditions the kinetic model of growth of differently shaped quantum dots based on the general nucleation theory is proposed. The theory is improved by taking into account the change in free energy of nucleation of an island due to the formation of additional edges of islands and due to the dependence of surface energies of facets of quantum dots on the thickness of a 2D wetting layer during the Stranski–Krastanow growth. Calculations of noise and signal characteristics of infrared photodetectors based on heterostructures with quantum dots of germanium on silicon are done. Dark current in such structures caused by thermal emission and barrier tunneling of carriers, as well as detectivity of the photodetector in the approximation of limitation by generation-recombination noises are estimated. Moreover, the presence of dispersion of quantum dots by size is taken into account in the calculations of the generation-recombination noises. Results of calculations of the properties of structures with quantum dots and their dependencies on growth parameters, as well as the characteristics of quantum dot photodetectors are presented. Comparison of the estimated parameters of quantum dots ensembles and the characteristics of quantum dot photodetectors with experimental data is carried out.
Twórcy
autor
  • Scientific Research Company “Carat”, Stryjska St. 202, Lviv 79031, Ukraine
  • Scientific Research Company “Carat”, Stryjska St. 202, Lviv 79031, Ukraine
  • National Research Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
  • National Research Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
  • National Research Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
autor
  • National Research Tomsk State University, Lenin Av. 36, Tomsk 634050, Russia
Bibliografia
  • [1] D.J. Eaglesham, M. Cerullo, Dislocation-free Stranski–Krastanov growth of Ge on Si(100), Phys. Rev. Lett. 64 (1990) 1943–1946.
  • [2] Y.-W. Mo, D.E. Savage, B.S. Swartzentruber, M.G. Lagally, Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001), Phys. Rev. Lett. 65 (1990) 1020–1023.
  • [3] P. Martyniuk, A. Rogalski, Quantum-dot infrared photodetectors: status and outlook, Prog. Quantum Electron. 32 (2008) 89–120.
  • [4] K. Brunner, Si/Ge nanostructures, Rep. Prog. Phys. 65 (2002) 27–72.
  • [5] K.L. Wang, D. Cha, J. Liu, C. Chen, Ge/Si self-assembled quantum dots and their optoelectronic device applications, Proc. IEEE 95 (2007) 1866–1882.
  • [6] A.A. Shklyaev, M. Ichikawa, Extremely dense arrays of germanium and silicon nanostructures, Phys. Usp. 51 (2008) 133–161.
  • [7] A.V. Voitsekhovskii, A.P. Kokhanenko, A.G. Korotaev, S.N. Nesmelov, Photoelectric characteristics of PtSi-Si Schottky barrier with boron heavily-doped nanolayer, Proc. SPIE 4413 (2001) 387–390.
  • [8] A. Rogalski, Recent progress in infrared detector technologies, Infrared Phys. Technol. 54 (2011) 136–154.
  • [9] A.I. Yakimov, Ge/Si heterostructures with Ge quantum dots for mid-infrared photodetectors, Optoelectron. Instrum. Data Proces. 49 (2013) 467–475.
  • [10] O.P. Pchelyakov, A.V. Dvurechenskii, A.I. Nikiforov, A.V. Voitsekhovskii, D.V. Grigor’ev, A.P. Kokhanenko, Ge/Si nanoheterostructures with ordered Ge quantum dots for optoelectronic applications, Russ. Phys. J. 53 (2011) 943–948.
  • [11] J. Phillips, Evaluation of the fundamental properties of quantum dot infrared detectors, J. Appl. Phys. 91 (2002) 4590–4594.
  • [12] A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays, J. Appl. Phys. 105 (2009), 091101.
  • [13] G. Liu, J. Zhang, L. Wang, Dark current model and characteristics of quantum dot infrared photodetectors, Infrared Phys. Technol. 73 (2015) 36–40.
  • [14] A.I. Yakimov, V.V. Kirienko, V.A. Armbrister, A.A. Bloshkin, A.V. Dvurechenskii, Phonon bottleneck in p-type Ge/Si quantum dots, Appl. Phys. Lett. 107 (2015), 213502.
  • [15] A. Mahmoodi, H.D. Jahromi, M.H. Sheikhi, Dark current modeling and noise analysis in quantum dot infrared photodetectors, IEEE Sens. J. 15 (2015)5504–5509.
  • [16] H. Liu, Q. Tong, G. Liu, C. Yang, Y. Shi, Performance characteristics of quantum dot infrared photodetectors under illumination condition, Opt. Quant. Electron. 47 (2015) 721–733.
  • [17] H. Liu, J. Zhang, Performance investigations of quantum dots infrared photodetector, Infrared Phys. Technol. 55 (2012) 3320–3325.
  • [18] L. Lin, H.L. Zhen, N. Li, W. Lu, Q.C. Weng, D.Y. Xiong, F.Q. Liu, Sequential coupling transport for the dark current of quantum dots-in-well infrared photodetectors, Appl. Phys. Lett. 97 (2010), 193511.
  • [19] A.V. Osipov, S.A. Kukushkin, F. Schmitt, P. Hess, Phys. Rev. B 64 (1–6) (2001) 205421.
  • [20] A.V. Osipov, F. Schmitt, S.A. Kukushkin, P. Hess, Stress-driven nucleation of coherent islands: theory and experiment, Appl. Surf. Sci. 188 (2002) 156–162.
  • [21] V.G. Dubrovskii, G.E. Cirlin, V.M. Ustinov, Kinetics of the initial stage of coherent island formation in heteroepitaxial systems, Phys. Rev. B 68 (1–9) (2003) 075409.
  • [22] V.G. Dubrovskii, Calculation of the size-distribution function for quantum dots at the kinetic stage of growth, Semiconductors 40 (2006) 1123–1130.
  • [23] K.A. Lozovoy, A.V. Voytsekhovskiy, A.P. Kokhanenko, V.G. Satdarov, Comparative analysis of pyramidal and wedge-like quantum dots formation kinetics in Ge/Si(001) system, Surf. Sci. 619 (2014) 1–4.
  • [24] V.G. Dubrovskii, Nucleation Theory and Growth of Nanostructures, Springer, Berlin, DE, 2014, 601 p.
  • [25] K.A. Lozovoy, A.P. Kokhanenko, A.V. Voitsekhovskii, Influence of edge energy on modeling the growth kinetics of quantum dots, Cryst. Growth Des. 15 (2015) 1055–1059.
  • [26] P. Muller, R. Kern, The physical origin of the two-dimensional towards three-dimensional coherent epitaxial Stranski–Krastanov transition, Appl. Surf. Sci. 102 (1996) 6–11.
  • [27] K.A. Lozovoy, A.P. Kokhanenko, A.V. Voitsekhovskii, Generalized Muller–Kern formula for equilibrium thickness of a wetting layer with respect to the dependence of the surface energy of island facets on the thickness of the 2D layer, Phys. Chem. Chem. Phys. 17 (2015) 30052–30056.
  • [28] C. Ratsch, A. Zangwill, Equilibrium theory of the Stranski–Krastanov epitaxial morphology, Surf. Sci. 293 (1993) 123–131.
  • [29] V.G. Dubrovskii, N.V. Sibirev, X. Zhang, R.A. Suris, Stress-driven nucleation of three-dimensional crystal islands: from quantum dots to nanoneedles, Cryst. Growth Des. 10 (2010) 3949–3955.
  • [30] X. Zhang, V.G. Dubrovskii, N.V. Sibirev, X. Ren, Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates, Cryst. Growth Des. 11 (2011) 5441–5448.
  • [31] G. Ouyang, L.H. Liang, C.X. Wang, G.W. Yang, Size-dependent interface energy, Appl. Phys. Lett. 88 (1–3) (2006) 091914.
  • [32] G. Ouyang, C.X. Wang, G.W. Yang, Surface energy of nanostructural materials with negative curvature and related size effects, Chem. Rev. 109 (2009)4221–4247.
  • [33] H.T. Johnson, L.B. Freund, Mechanics of coherent and dislocated island morphologies in strained epitaxial material systems, J. Appl. Phys. 81 (1997)6081–6090.
  • [34] G.-H. Lu, F. Liu, Towards quantitative understanding of formation and stability of Ge hut islands on Si(001), Phys. Rev. Lett. 94 (1–4) (2005) 176103.
  • [35] G.-H. Lu, M. Cuma, F. Liu, First-principles study of strain stabilization of Ge(105) facet on Si(001), Phys. Rev. B 72 (1–6) (2005) 125415.
  • [36] D. Scopece, F. Montalenti, M.J. Beck, Stability of Ge on Si(1 1 10) surfaces and the role of dimer tilting, Phys. Rev. B 85 (1–11) (2012), 085312.
  • [37] X.L. Li, G.W. Yang, Theoretical determination of contact angle in quantum dot self-assembl, Appl. Phys. Lett. 92 (1–3) (2008) 171902.
  • [38] X.L. Li, The influence of the atomic interactions in out-of-plane on surface energy and its applications in nanostructures, J. Appl. Phys. 112 (1–7) (2012) 013524.
  • [39] K.A. Lozovoy, A.V. Voitsekhovskii, A.P. Kokhanenko, V.G. Satdarov, Photodetectors and solar cells with Ge/Si quantum dots parameters dependence on growth conditions, Int. J. Nanotechnol. 12 (2015) 209–217.
  • [40] K.A. Lozovoy, A.P. Kokhanenko, A.V. Voitsekhovskii, Critical thickness of 2D to 3D transition in GexSi1-x/Si(001) system, Appl. Phys. Lett. 109 (1-4) (2016), 021604.
  • [41] C.M. Retford, M. Asta, M.J. Miksis, P.W. Voorhees, E.B. Webb, Energetics of {105}-faceted Ge nanowires on Si(001): an atomistic calculation of edge contributions, Phys. Rev. B 75 (1-8) (2007), 075311.
  • [42] A.B. Talochkin, A.A. Shklyaev, V.I. Mashanov, Super-dense array of Ge quantum dots grown on Si(100) by low-temperature molecular beam epitaxy, J. Appl. Phys. 115 (2014) 144306.
  • [43] F. Montalenti, D. Scopece, L. Miglio, One-dimensional Ge nanostructures on Si(001) and Si(1 1 10): dominant role of surface energy, C. R. Phys. 14 (2013) 542–552.
  • [44] A.I. Nikiforov, V.A. Timofeev, S.A. Teys, A.K. Gutakovsky, O.P. Pchelyakov, Initial stage growth of GexSi1-xlayers and Ge quantum dot formation on GexSi1-xsurface by MBE, Nanoscale Res. Lett. 7 (1-5) (2012) 561.
  • [45] D.V. Yurasov, Yu.N. Drozdov, The critical thickness of Stranski-Krastanov transition with accounted segregation effect, Semiconductors 42 (2008) 563.
  • [46] A.I. Yakimov, A.V. Dvurechenskii, A.I. Nikiforov, A.A. Bloshkin, A.V. Nenashev, V.A. Volodin, Electronic states in Ge/Si quantum dots with type-II band alignment initiated by space-charge spectroscopy, Phys. Rev. B 73 (2006) 115333.
  • [47] J.-M. Baribeau, X. Wu, N.L. Rowell, D.J. Lockwood, Ge dots and nanostructures grown epitaxially on Si, J. Phys. Condens. Matter. 18 (2006) 139.
  • [48] J. Tersoff, B.J. Spencer, A. Rastelli, H. Kanel, Barrierless formation and faceting of SiGe islands on Si(001), Phys. Rev. Lett. 89 (2002), 196104.
  • [49] A. Yakimov, V. Timofeev, A. Bloshkin, A. Nikiforov, A. Dvurechenskii, Photovoltaic Ge/Si quantum dot detectors operating in the mid-wave atmospheric window (3 to 5 μm), Nanoscale Res. Lett. 7 (1-6) (2012) 494.
  • [50] A. Yakimov, V. Kirienko, V. Armbrister, A. Dvurechenskii, Broadband Ge/Si Ge quantum dot photodetector on pseudosubstrate, Nanoscale Res. Lett. 8 (1-5) (2013) 217.
  • [51] S. Tong, J.-Y. Lee, H.-J. Kim, F. Liu, K.L. Wang, Ge dot mid-infrared photodetectors, Opt. Mater. 27 (2005) 1097–1100.
  • [52] A.I. Yakimov, A.A. Bloshkin, A.V. Dvurechenskii, Calculating the energy spectrum and electronic structure of two holes in a pair of strained Ge-Si coupled quantum dots, Phys. Rev. B 81 (1–11) (2010) 115434.
  • [53] A.I. Yakimov, N.P. Stepina, A.V. Dvurechenskii, A.I. Nikiforov, A.V. Nenashev, Interband absorption in charged Ge/Si type-II quantum dots, Phys. Rev. B 63 (1–6) (2001), 045312.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e53e55d8-172f-48ab-a48d-ab42e2d7e6f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.