PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical optimization of organic solar cell with bulk heterojunction

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work is devoted to the optimization of layer thickness in an organic photovoltaic cell. It presents the applied calculation method which is based on the optical transfer matrix 2×2 formalism. We present the influence of thickness of a PEDOT:PSS layer and of an active layer on the normalized modulus squared of optical electric fields distribution inside devices and on the distributions of exciton generation rate. We present the relationship between optimal thicknesses of the PEDOT:PSS layer and the active layer. We also present the influence of antireflection coating on distributions of optical electrical fields, as well as the distributions of exciton generation rate. Perpendicular and oblique illumination of the photovoltaic structure is discussed.
Twórcy
autor
  • Institute of Physics, Cracow University of Technology, 1 Podchorążych Str., 30-084 Cracow, Poland
Bibliografia
  • 1. L. Fraas and L. Partain, Solar Cells and Their Applications, John Wiley & Sons, Inc., Publication, New Jersey, 2010.
  • 2. B. Parida, S. Iniyanb, and R. Goic, “A review of solar photo-voltaic technologies”, Renew Sust. Energ. Rev.15, 1625–1636 (2011).
  • 3. E. Gondek, I.V. Kityk, and A. Danel, “Photovoltaic effect in single layer 1H-pyrazolo3,4-b]quinoline and 1H-pyrazolo3,4-b]quioxaline/poly(3-decylthiophene) polymer cellsbold”bold, Z Naturforschung A64, 632–638 (2009).
  • 4. E. Gondek, Y. Djaoued, J. Robichaud, P. Karasiński, I.V.Kityk, A. Danel, and K.J. Plucinski, “Influence of TiO2 nano-particles on the photovoltaic efficiency of the ITO/ PEDOT: PSS/fluorine copolymers/polythiophene:TiO2/Al architecture”, J. Mater. Sci-Mater El. 23, 2057–2064 (2012).
  • 5. A. Pivrikas, H. Neugebauer, and N.S. Sariciftci, “Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: A comparative review”, Sol. Energy 85, 1226–1237 (2011).
  • 6. G. Kalita, M. Masahiro, W. Polchi, and M. Umeno, Solid State Electronics 54, 447–451 (2010).
  • 7. J. Alstrup, M. J.Ýrgensen, A.J. Medford, and F.C. Krebs, “Ultrafast and parsimonious material screening for polymer solar cells Rusing differentially pumped slot-die coating”, Appl. Materials & Interfaces 2, 2819–2827 (2010).
  • 8. H. Hoppe and N.S. Sariciftci, “Organic solar cells: An overview”, J. Mater. Res. 19, 1924–1945 (2004).
  • 9. P. Peumans, A. Yakimov, and S.R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, J. Appl. Phys. 93, 3693–3723 (2003).
  • 10. B.R. Saunders and M.L.Turner, “Nanoparticle-polymer photovoltaic cells”, Advances in Colloid and Interface Science 138, 1–23 (2008).
  • 11. G. Li, L. Liu, F. Wei, S. Xia, and X. Qian, “Recent progress in modelling, simulation, and optimization of polymer solar cells”, IEEE J. Photovoltaics 2, 320–340 (2012).
  • 12. L.A.A. Pettersson, L.S. Roman, and O. Inganäs, “Modelling photocurrent action spectra of photovoltaics based on organic thin films”, J. Appl. Phys. 86, 487–496 (1999).
  • 13. R. Häusermann, E. Knapp, M. Moos, N.A. Reinke, T. Flatz, and B. Ruhstaller, “Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: parameter extraction and sensitivity analysis”, J. Appl. Phys. 106, 104507 (2009).
  • 14. A. Meyer and H. Ade, “The effect of angle of incidence on the optical field distribution within thin film organic solar cells”, J. Appl. Phys. 106, 113101 (2009).
  • 15. S. Jung, K.Y. Kim, Y.I. Lee, J.H. Youn, H.T. Moon, J. Jang, and J.Kim, “Optical modelling and analysis of organic solar cells with coherent multilayers and incoherent glass substrate using generalized transfer matrix method”, Jpn. J. Appl. Phys. 50, 122301–1 (2011).
  • 16. G. Li, L. Liu, F. Wei, S. Xia, and X. Qian, “Recent progress in modelling, simulation, and optimization of polymer solar cells”, IEEE J. Photovoltaics 2, 320–340 (2012).
  • 17. E. Gondek, “Influence of substrate refractive index and antireflection coating on excitons generation in organic solar cell”, submitted to Opt. Quant. Electron. 46, 221–227 (2014).
  • 18. J. Chandrasekaran, D. Nithyaprakash, K.B. Ajjan, S. Maruthamuthu, D. Manoharan, and S. Kumar, “Hybrid solar cell based on blending of organic and inorganic materials - An overview”, Renew. Sust. Energ. Rev. 15, 1228–1238 (2011).
  • 19. P. Karasiński, J. Jaglarz, M. Reben, E. Skoczek, and J. Mazur, “Porous silica xerogel films as antireflective coatings. Fabrication and characterization”, Opt. Mater. 33, 1989–1994 (2011).
  • 20. E. Skoczek, J. Jaglarz, P. Karasiński, “Ellipsometric and spectrophotometric investigations of porous silica thin films produced by sol-gel method”, Acta Phys. Pol. A120, 732–735 (2011).
  • 21. B.E. Seleh and M.C. Teich, Fundamentals of Photonics, Wiley, New York, 1991 ch.10.1B.
  • 22. S. Laux, N. Kaiser, A. Zöller, R. Götzelmann, H. Lauth, and H. Bernitzki, “Room-temperature deposition of Indium Tin oxide thin films with plasma ion-assisted evaporation”, Thin Solid Films 335, 1–5 (1998).
  • 23. D. Zhu, W. Shen, H. Ye, X. Liu, and H. Zhen, “Determination of the optical constants of polymer light-emitting diode films from single reflection measurements”, J. Phys. D: Appl. Phys. 41, 235104 (5pp) (2008).
  • 24. E.D. Palik, Handbook of Optical Constants of Solids, Vol.1, Table XII Academic Press, New York, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-259fdaff-7108-4966-a52e-4510b00e4465
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.