PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review on techniques of optimal placement and sizing of DG in distribution systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd technik optymalnego rozmieszczenia i wielkości DG w systemie dystrybucji
Języki publikacji
EN
Abstrakty
EN
Distributed generation (DG)is a term describing the generation of the electricity use on other side rather than transmitting energy over the electric grid. By using this (Distribution generation) DG in power system plays a major role in improving voltage profile, reduce the power losses and improves stability of the substation. Distribution generations (DG) are located near to load centres, so care should be taken while allocating DG in the power system to increases the benefits. By placing the distributed generators in the distribution system (primary distribution system) the real, reactive power and improving the voltage profile can be managed in optimal way will be explained in this paper. Optimal Allocation of the DG is identified by using the using the VSI, ratings are computed by using the different optimal techniques. The power loss reduction and better voltage regulation can be attained by using the optimal techniques. A clear and complete analysis of performance should be carried throughout the work to demonstrate the efficiency of the system.
PL
Generacja rozproszona (DG) to termin opisujący wytwarzanie energii elektrycznej po drugiej stronie, a nie przesyłanie energii przez sieć elektryczną. Dzięki zastosowaniu tego (Generacja dystrybucyjna) DG w systemie elektroenergetycznym odgrywa główną rolę w poprawie profilu napięcia, zmniejszeniu strat mocy i poprawie stabilności podstacji. Generacje dystrybucyjne (DG) znajdują się w pobliżu centrów obciążenia, dlatego należy zachować ostrożność podczas przydzielania DG w systemie elektroenergetycznym, aby zwiększyć korzyści. Poprzez umieszczenie rozproszonych generatorów w systemie dystrybucyjnym (pierwotny system dystrybucyjny) w niniejszym artykule zostanie wyjaśniona rzeczywista moc bierna i poprawa profilu napięcia. Optymalna alokacja DG jest identyfikowana przy użyciu VSI, oceny są obliczane przy użyciu różnych optymalnych technik. Zmniejszenie strat mocy i lepszą regulację napięcia można osiągnąć przy użyciu optymalnych technik. W trakcie prac należy przeprowadzić jasną i kompletną analizę wydajności, aby wykazać skuteczność systemu.
Rocznik
Strony
1--6
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
  • sathyabama institute of science and technology, sathyabama institute of science and technology, India
autor
  • sathyabama institute of science and technology, sathyabama institute of science and technology, India
Bibliografia
  • 1. Thomas Ackermann, GoranAndersson, and LennartSoder, “Distributed generation: a definition”, Electric Power Systems Research, vol. 57, pp. 195–204, 2001.
  • 2. Thomas Ackermann, GoranAndersson, and LennartSoder, “Distributed generation: a definition”, Electric Power Systems Research, vol. 57, pp. 195–204, 2001.
  • 3. J. A. Pecas Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, N. Jenkins, “Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities”, Electric Power Systems Research, vol.77, pp. 1189–1203, 2007.
  • 4. G. Pepermans, J. Driesenb, D. Haeseldonckx, R. Belmans, W. D’haeseleer, “Distributed generation: definition, benefits and issues”, Energy Policy, vol. 33, pp.787–798, 2005.
  • 5. N. Hadjsaid, J. F. Canard, F. Dumas, “Dispersed generation impact on distribution networks”, IEEE Computer Applications in Power, vol. 12, no. 2, pp. 22–8, 1999.
  • 6. W. El-Khattam, M. M. A. Salama, “Distributed generation technologies, definitions and benefits”, Electric Power Systems Research, vol. 71, pp. 119–128, 2004.
  • 7. M. H. Moradi, M. Abedin, “A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems”, Electrical Power and Energy Systems, vol. 34, pp. 66–74, 2012.
  • 8. Rajkumar Viral, D. K. Khatod, “Optimal planning of distributed generation systems in distribution system: A review”, Renewable and Sustainable Energy Reviews, vol. 16, pp. 5146–5165, 2012.
  • 9. PremPrakash, Dheeraj K. Khatod, “Optimal sizing and siting techniques for distributed generation in distribution systems: A review”, Renewable and Sustainable Energy Reviews, vol. 57, pp. 111–130, 2016.
  • 10. Rana H. A. Zubo, GeevMokryani, Haile-Selassie Rajamani, JamshidAghaei, TaherNiknam, PrashantPillai, “Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review”, Renewable and Sustainable Energy Reviews, vol. 72, pp. 1177–1198, 2017.
  • 11. R. Sanjay, T. Jayabarathi, T. Raghunathan, V. Ramesh, NadarajahMithulananthan, “Optimal Allocation Of Distributed Generation Using Hybrid Grey Wolf Optimizer”, in IEEE Access, vol. 5, pp. 14807-14818, 2017.
  • 12. M. Mashhour, M. A. Golkar and S. M. M. Tafreshi, “Optimal sizing and siting of distributed generation in radial distribution network: Comparison of unidirectional and bidirectional power flow scenario”, IEEE Bucharest Power Tech, Bucharest, pp. 1- 8, June 28th - July 2nd 2009.
  • 13. W. El-Khattam, Y. G. Hegazy, and M. M. A. Salama, “An integrated distributed generation optimization model for distribution system planning”, in IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 1158-1165, May 2005.
  • 14. Gianfranco Chicco, PierluigiMancarella, “Distributed multigeneration: A comprehensive view”, Renewable and Sustainable Energy Reviews, vol. 13, pp. 535–551, 2009.
  • 15. M. M. Aman, G. B. Jasmon, A. H. A. Bakar, H. Mokhlis, “A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm”, Energy, vol. 66 , pp. 202-215, 2014.
  • 16. IEEE Standards 1547-2030, Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid, The Institute of Electrical and Electronics Engineers, 2014.
  • 17. Aldo Canova, Gianfranco Chicco, Giuseppe Genon, PierluigiMancarella, “Emission characterization and evaluation of natural gas-fueled cogeneration micro turbines and internal combustion engines”, Energy Conversion and Management, vol. 49, pp. 2900–2909, 2008.
  • 18. Christianne D. Aussant, Alan S. Fung, V. IsmetUgursal, HessamTaherian, “Residential application of internal combustion engine based cogeneration in cold climate— Canada”, Energy and Buildings, vol. 41, pp. 1288–1298, 2009.
  • 19. Kyung Tae Yun, Heejin Cho, Rogelio Luck, Pedro J. Mago, “Modeling of reciprocating internal combustion engines for power generation and heat recovery”, Applied Energy, vol. 102, pp. 327–335, 2013.
  • 20. A. Ameli, S. Bahrami, F. Khazaeli and M. R. Haghifam, “A Multiobjective Particle Swarm Optimization for Sizing and Placement of DGs from DG Owner's and Distribution Company's Viewpoints”, in IEEE Transactions on Power Delivery, vol. 29, no. 4, pp. 1831-1840, Aug. 2014.
  • 21. T. Adefarati and R. C. Bansal, “Integration of renewable distributed generators into the distribution system: a review”, IET Renewable Power Generation, vol. 10, no. 7, pp. 873-884, 2016.
  • 22. Wen-Shan Tan, Mohammad Yusri Hassan, Md Shah Majid, Hasimah Abdul Rahman, “Optimal distributed renewable generation planning: A review of different approaches”, Renewable and Sustainable Energy Reviews, vol. 18, pp. 626–645, 2013.
  • 23. Bikash Kumar Sahu, “A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries”, enewable and Sustainable Energy Reviews, vol. 43, pp. 621–634, 2015.
  • 24. M. Karimi, H. Mokhlis, K. Naidu, S. Uddin, A. H. A. Bakar, “Photovoltaic penetration issues and impacts in distribution network – A review”, Renewable and Sustainable Energy Reviews, vol. 53, pp. 594–605, 2016.
  • 25. Ming Ding, ZhichengXu, Weisheng Wang, Xiuli Wang, Yunting Song, Dezhi Chen, “A review on China's large-scale PV integration: Progress, challenges and recommendations”, Renewable and Sustainable Energy Reviews, vol. 53, pp. 639–652, 2016.
  • 26. A. Girard, E. J. Gago, J. Ordonez, T. Muneer, “Spain's energy outlook: A review of PV potential and energy export”, Renewable Energy, vol. 86, pp. 703-715, 2016.
  • 27. T. Jin, Y. Tian, C. W. Zhang and D. W. Coit, “Multicriteria Planning for Distributed Wind Generation Under Strategic Maintenance”, IEEE Transactions on Power Delivery, vol. 28, no. 1, pp. 357-367, 2013.
  • 28. Ming Cheng, Ying Zhu, “The state of the art of wind energy conversion systems and technologies: A review”, Energy Conversion and Management, vol. 88, pp. 332–347, 2014.
  • 29. Rodrigo Mena, Martin Hennebel, Yan-Fu Li, Carlos Ruiz, Enrico Zio, “A risk-based simulation and multi-objective optimization framework for the integration of distributed renewable generation and storage”, Renewable and Sustainable Energy Reviews, vol. 37, pp. 778–793, 2014.
  • 30. Y. S. Mohammed, A. S. Mokhtar, N. Bashir, R. Saidur, “An overview of agricultural biomass for decentralized rural energy in Ghana”, Renewable and Sustainable Energy Reviews, vol. 20, pp. 15–22, 2013.
  • 31. P. Reche-López, N. Ruiz-Reyes, S. GarcíaGalán, F. Jurado, “Comparison of metaheuristic techniques to determine optimal placement of biomass power plants”, Energy Conversion and Management, vol. 50, pp. 2020–2028, 2009.
  • 32. H. Nehrir, Caisheng Wang and S. R. Shaw, "Fuel cells: promising devices for distributed generation," in IEEE Power and Energy Magazine, vol. 4, no. 1, pp. 47-53, Jan-Feb. 2006.
  • 33. MudathirFunshoAkorede, HashimHizam, EdrisPouresmaeil, “Distributed energy resources and benefits to the environment”, Renewable and Sustainable Energy Reviews, vol. 14, pp. 724–734, 2010.
  • 34. Yijia Cao, Xifan Wang, Yong Li, Yi Tan, Jianbo Xing, Ruixiang Fan, “A comprehensive study on low-carbon impact of distributed generations on regional power grids: A case of Jiangxi provincial power grid in China”, Renewable and Sustainable Energy Reviews, vol. 53, pp. 766–778, 2016.
  • 35. P. S. Georgilakis and N. D. Hatziargyriou, “Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research”, IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3420-3428, 2013.
  • 36. K. Mahmoud, N. Yorino, and A. Ahmed, “Optimal Distributed Generation Allocation in Distribution Systems for Loss Minimization”, IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 960-969, 2016.
  • 37. H. L. Willis, "Analytical methods and rules of thumb for modeling DG-distribution interaction," 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, vol. 3, pp. 1643-1644, 16–20 July 2000.
  • 38. P. N. Vovos and J. W. Bialek, “Direct incorporation of fault level constraints in optimal power flow as a tool for network capacity analysis”, IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 2125-2134, 2005.
  • 39. S. H. Lee and J. W. Park, “Optimal Placement and Sizing of Multiple DGs in a Practical Distribution System by Considering Power Loss”, IEEE Transactions on Industry Applications, vol. 49, no. 5, pp. 2262-2270, 2013.
  • 40. Duong Quoc Hung, N. Mithulananthan, R. C. Bansal, “Analytical strategies for renewable distributed generation integration considering energy loss minimization”, Applied Energy, vol. 105, pp. 75–85, 2013.
  • 41. Y. Zhao, Y. An, and Q. Ai, “Research on size and location of distributed generation with vulnerable node identification in the active distribution network”, IET Generation, Transmission & Distribution, vol. 8, no. 11, pp. 1801-1809, 2014.
  • 42. M. A. Kashem, A. D. T. Le, M. Negnevitsky, and G. Ledwich, “Distributed generation for minimization of power losses in distribution systems”, 2006 IEEE Power Engineering Society General Meeting, Montreal, Que., Canada, pp. 8-16, 18–22 June 2006.
  • 43. V. V. S. N. Murthy, Ashwani Kumar, “Comparison of optimal DG allocation methods in radial distribution systems based on sensitivity approaches”, Electrical Power and Energy Systems, vol. 53, pp. 450–467, 2013.
  • 44. A. K. Singh, S. K. Parida, “Novel sensitivity factors for DG placement based on loss reduction and voltage improvement”, Electrical Power and Energy Systems, vol. 74, pp. 453–456, 2016.
  • 45. SudiptaGhosh, S. P. Ghoshal, SaradinduGhosh, “Optimal sizing and placement of distributed generation in a network system”, Electrical Power and Energy Systems, vol. 32, pp. 849–856, 2010.
  • 46. Tuba Gozel, M. HakanHocaoglu, “An analytical method for the sizing and siting of distributed generators in radial systems”, Electric Power Systems Research, vol. 79, pp. 912–918, 2009.
  • 47. M. F. AlHajri and M. E. El-Hawary, "Optimal Distribution Generation Sizing via Fast Sequential Quadratic Programming," Large Engineering Systems Conference on Power Engineering, Montreal, Que., Canada, pp. 63-66, 10–12 Oct 2007.
  • 48. Mohamed A. Darfoun, Mohamed E. El-Hawary, “Multi-objective Optimization Approach for Optimal Distributed Generation Sizing and Placement”, Electric Power Components and Systems, vol. 43, no.7, pp. 828-836, 2015.
  • 49. M. Esmaili, “Placement of minimum distributed generation units observing power losses and voltage stability with network constraints”, IET Generation, Transmission & Distribution, vol. 7, no. 8, pp. 813-821, 2013.
  • 50. Antonio José Gil Mena, Juan Andrés Martín García, “An efficient approach for the siting and sizing problem of distributed generation”, Electrical Power and Energy Systems, vol. 69, pp. 167–172, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bee051b0-0010-4a6c-be29-a0f721300034
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.