PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastic stifness estimation of aggregate-ITZ system of concrete through matrix porosity and volumetric considerations: explanation and exemplifcation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modulus of elasticity of a concrete depends on the elastic stifness of both the cementitious matrix and the aggregate – ITZ system, which includes any slippage mechanisms under loading between the aggregate and the cementitious matrix within the interfacial transition zone (ITZ). A procedure is presented in this paper to estimate the elastic stifness of an aggregate – ITZ system within a cementitious matrix, by considering the relative volumes and the porosities of the concrete components. The method was validated by determining the elastic stifness of both the limestone – ITZ and the electric arc furnace slag (EAFS)-ITZ systems when embedded in a slag-based cementitious matrix. The greater stifness of the EAFS-ITZ system in comparison with the natural aggregate system explained the higher strength and modulus of elasticity of the concrete following additions of EAFS. Moreover, having determined those parameters, the elastic moduli of concretes with a similar cementitious matrix could then be accurately estimated.
Słowa kluczowe
Rocznik
Strony
art. no. e59, 1--17
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Department of Civil Engineering, Escuela Politécnica Superior, University of Burgos, Spain
autor
  • Department of Construction, Escuela Politécnica Superior, University of Burgos, Spain
  • Department of Mechanical Engineering, Escuela de Ingeniería de Bilbao I, University of the Basque Country, Bilbao, Spain
  • Department of Mechanical Engineering, Escuela de Ingeniería de Bilbao I, University of the Basque Country, Bilbao, Spain
  • Department of Civil Engineering, Escuela Politécnica Superior, University of Burgos, Spain
Bibliografia
  • 1. Silva RV, De Brito J, Dhir RK. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. J Clean Prod. 2016;112:2171-86.
  • 2. Revilla-Cuesta V, Skaf M, Santamaría A, Ortega-López V, Manso JM. Assessment of longitudinal and transversal plastic behavior of recycled aggregate self-compacting concrete: a two-way study. Constr Build Mater. 2021;292:123426.
  • 3. Kazmi SMS, Munir MJ, Wu YF, Patnaikuni I, Zhou Y, Xing F. Axial stress-strain behavior of macro-synthetic fber reinforced recycled aggregate concrete. Cem Concr Compos. 2019;97:341-356.
  • 4. Saranya P, Nagarajan P, Shashikala AP. Performance evaluation of geopolymer concrete beams under monotonic loading. Structures. 2019;20:560-569.
  • 5. Cao Y, Fan Q, Mahmoudi Azar S, Alyousef R, Yousif ST, Wakil K, et al. Computational parameter identifcation of strongest infuence on the shear resistance of reinforced concrete beams by fiber reinforcement polymer. Structures. 2020;27:118-127.
  • 6. Al-Osta MA, Sharif AM, Ahmad S, Adekunle SK, Al-Huri M, Sharif AM. Efect of hybridization of straight and hooked steel fbers and curing methods on the key mechanical properties of UHPC. J Mater Res Technol. 2021;15:3222-3239.
  • 7. Valipour M, Khayat KH. Robustness of ultra-high-performance concrete to changes in material temperature. ACI Mater J. 2020;117(4):47-56.
  • 8. Tenza-Abril AJ, Benavente D, Pla C, Baeza-Brotons F, Valdes Abellan J, Solak AM. Statistical and experimental study for determining the influence of the segregation phenomenon on physical and mechanical properties of lightweight concrete. Constr Build Mater. 2020;238:117642.
  • 9. José N, Ahmed H, Miguel B, Luís E, Jorge B. Magnesia (Mgo) production and characterization, and its influence on the performance of cementitious materials: a review. Mater. 2020;13(21):4752.
  • 10. Sousa FHF, Kazmierczak CDS, Quinino UCDM, Fernandes AJMM, Kulakowski MP. Applicability of models provided by technical standards to estimate the static modulus of elasticity of concretes produced with recycled coarse aggregates. Struct Concr. 2021;22(S1):E94-104.
  • 11. Meng QB, Liu JF, Ren L, Pu H, Chen YL. Experimental study on rock strength and deformation characteristics under triaxial cyclic loading and unloading conditions. Rock Mech Rock Eng. 2021;54(2):777-797.
  • 12. Cabrera S, González A, Rotondaro R. Compressive strength in compressed earth blocks. Comparison between diferent test methods. Inf Constr. 2020;72(560):1-12.
  • 13. Mohammed SI, Najim KB. Mechanical strength, flexural behavior and fracture energy of recycled concrete aggregate self-compacting concrete. Structures. 2020;23:34-43.
  • 14. Fang G, Zhang M. The evolution of interfacial transition zone in alkali-activated fly ash-slag concrete. Cem Concr Res. 2020;129:105963.
  • 15. Ramaniraka M, Rakotonarivo S, Payan C, Garnier V. Efect of the interfacial transition zone on ultrasonic wave attenuation and velocity in concrete. Cem Concr Res. 2019;124:105809.
  • 16. EC-2. Eurocode 2: Design of concrete structures. Part 1–1: General rules and rules for buildings. CEN (European Committee for Standardization). 2010.
  • 17. EN-Euronorm. Rue de stassart, 36. Belgium-1050 Brussels, European Committee for Standardization.
  • 18. Schneider U, Schwesinger P, Debicki GS, Diederichs U, Felicetti R, Franssen JM, et al. Modulus of elasticity for service and accident conditions. Mater Struct. 2004;37(266):139-144.
  • 19. Fuente-Alonso JA, Ortega-López V, Skaf M, Aragón Á, San-José JT. Performance of fiber-reinforced EAF slag concrete for use in pavements. Constr Build Mater. 2017;149:629-638.
  • 20. Revilla-Cuesta V, Skaf M, Faleschini F, Manso JM, Ortega-López V. Self-compacting concrete manufactured with recycled concrete aggregate: an overview. J Clean Prod. 2020;262:121362.
  • 21. Lanti R, Martínez M. Biaxial bending and axial load in rein forced concrete sections. Numerical approach. Inf Constr. 2020;72(558):1-9.
  • 22. ACI-318-19. Building code requirements for structural concrete. American Concrete Institute (ACI). 2019.
  • 23. Gupta N, Siddique R, Belarbi R. Sustainable and greener self compacting concrete incorporating industrial by-products: a review. J Clean Prod. 2021;284:124803.
  • 24. Santamaría A, Orbe A, Losañez MM, Skaf M, Ortega-Lopez V, González JJ. Self-compacting concrete incorporating electric arc-furnace steelmaking slag as aggregate. Mater Des. 2017;115:179-193.
  • 25. Adekomaya O, Majozi T. Mitigating environmental impact of waste glass materials: review of the existing reclama tion options and future outlook. Environ Sci Pollut Res. 2021;28(9):10488-502.
  • 26. Mohajerani A, Burnett L, Smith JV, Markovski S, Rodwell G, Rahman MT, et al. Recycling waste rubber tyres in construction materials and associated environmental considerations: a review. Resour Conserv Recycl. 2020;155:104679.
  • 27. Hossain MU, Poon CS, Lo IMC, Cheng JCP. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resour Conserv Recycl. 2016;109:67-77.
  • 28. Zhan BJ, Xuan DX, Poon CS, Scrivener KL. Characterization of interfacial transition zone in concrete prepared with carbon ated modeled recycled concrete aggregates. Cem Concr Res. 2020;136:106175.
  • 29. Revilla-Cuesta V, Ortega-López V, Skaf M, Manso JM. Efect of fne recycled concrete aggregate on the mechanical behavior of self-compacting concrete. Constr Build Mater. 2020;263:120671.
  • 30. Han T, Siddique A, Khayat K, Huang J, Kumar A. An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete. Constr Build Mater. 2020;244:118271.
  • 31. Bušić R, Benšić M, Miličević I, Strukar K. Prediction models for the mechanical properties of self-compacting concrete with recycled rubber and silica fume. Materials. 2020;13(8):1821.
  • 32. Bravo M, De Brito J, Pontes J, Evangelista L. Shrinkage and creep performance of concrete with recycled aggregates from CDW plants. Mag Concr Res. 2017;69(19):974-995.
  • 33. Gonzalez-Corominas A, Etxeberria M. Efects of using recycled concrete aggregates on the shrinkage of high performance concrete. Constr Build Mater. 2016;115:32-41.
  • 34. Skinner HB. Composite technology for total hip arthroplasty. Clin Orthop Relat Res. 1988;235:224-236.
  • 35. Ryshkewitch E. Compressive strength of porous sintered alumina and zirconia. J Am Ceram Soc. 1953;36(2):65-68.
  • 36. Cantero B, Bravo M, de Brito J, Sáez-del-Bosque IF, Medina C. Water transport and shrinkage in concrete made with ground recycled concrete-additioned cement and mixed recycled aggregate. Cem Concr Compos. 2021;118:103957.
  • 37. Ortega-López V, García-Llona A, Revilla-Cuesta V, Santamaría A, San-José JT. Fiber-reinforcement and its efects on the mechanical properties of high-workability concretes manufactured with slag as aggregate and binder. J Build Eng. 2021;43:102548.
  • 38. Pedro D, de Brito J, Evangelista L. Mechanical characterization of high performance concrete prepared with recycled aggregates and silica fume from precast industry. J Clean Prod. 2017;164:939-949.
  • 39. Santamaría A, Orbe A, San José JT, González JJ. A study on the durability of structural concrete incorporating electric steelmaking slags. Constr Build Mater. 2018;161:94-111.
  • 40. Benmahiddine F, Bennai F, Cherif R, Belarbi R, Tahakourt A, Abahri K. Experimental investigation on the infuence of immer sion/drying cycles on the hydrothermal and mechanical properties of hemp concrete. J Build Eng. 2020;32:101758.
  • 41. Knudsen T. The dispersion model for hydration of Portland cement I. General concepts. Cem Concr Res. 1984;14(5):622-630.
  • 42. Amani A, Ramezanianpour AM, Palassi M. Investigation on the sustainable use of electric arc furnace slag aggregates in ecofriendly alkali-activated low fineness slag concrete as a green construction composite. J Clean Prod. 2021;307:127257.
  • 43. Ortega-López V, Fuente-Alonso JA, Santamaría A, San-José JT, Aragón Á. Durability studies on fiber-reinforced EAF slag concrete for pavements. Constr Build Mater. 2018;163:471-481.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ed2e180-820f-4db0-b944-c55951223c98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.