Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Currently, microcosms are used for research and assessment of environmental impacts on the environmental components. Microcosms are useful instruments in ecological studies, toxicology, and ecotoxicology. Microcosms allow the experimental study of ecosystems in a controlled medium. This review article is focused on the experiences of the use of aquatic and terrestrial microcosms in practice. The knowledge gained from studies of aquatic microcosms has applications in the removal of micro-plastics, pesticides, antibiotics, and their residues, heavy metals (Hg, Cd, Zn, etc.), the modification of the features of acid mine drainage, and the wastewater treatment. Terrestrial microcosms are suitable for the adaptation of the microbial community to pollution and acidification. The studies have identified potential microorganisms for remediation of the polluted environments and examined the effects of factors such as light, temperature, and redox conditions on the removal and transformation of the pollutants in soil. The effects of biofilm bacteria on bioremediation of pesticides and polycyclic aromatic hydrocarbons were also examined. These studies provide valuable insights into the relationships among organisms, processes, and the environment, and can contribute to a better understanding of environ-mental risks and bioremediation opportunities in different ecosystems.
Czasopismo
Rocznik
Tom
Strony
5--19
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
- Department of Environmental Engineering, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
autor
- Department of Environmental Engineering, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
autor
- Department of Environmental Engineering, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
Bibliografia
- [1] HORÁK J., LINHART I., KLUSOŇ P., Introduction to Toxicology and Ecology for Chemists, University of Chemistry and Technology in Prague (UCT Prague), Prague 2012 (in Czech).
- [2] LINHART I., Ecotoxicology. Interactions of Harmful Substances with Living Organisms, Their Mechanisms, Manifestations, and Consequences, University of Chemistry and Technology in Prague (UCT Prague), Prague 2012 (in Czech).
- [3] RAY P.C., YU H., FU P.P., Toxicity and environmental risks of nanomaterials. Challenges and future needs, J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 2009, 27 (1), 1–35. DOI: 10.1080/10590 500802708267.
- [4] GEISSEN V., MOL H., KLUMPP E., UMLAUF G., NADAL M., VAN DER PLOEG M., SJOERD E.A., VAN DE ZEE T.M., RITSEMA J.C., Emerging pollutants in the environment. A challenge for water resource management, Inter. Soil Water Conserv. Res., 2015, 3 (1), 57–65. DOI: 10.1016/j.iswcr.2015.03.002.
- [5] COCCIA M., BONTEMPI E., New trajectories of technologies for the removal of pollutants and emerging contaminants in the environment, Environ. Res., 2023, 229, 115938. DOI: 10.1016/j.envres.2023.115938.
- [6] HANSON M., SOLOMON K.R., Mesocosms and microcosms (aquatic), Encyclopedia of Toxicology, 4th Ed., Elsevier, 2023, 6, 155–159. DOI: 10.1016/B978-0-12-824315-2.00938-6.
- [7] MACDONALD J., How microcosms help us understand ecology, JSTOR Daily, available at: https://bib liotheek.ehb.be:2097/how-microcosms-help-us-understand-ecology/ .
- [8] MATHESON F., Microcosms, Encyclopedia of Ecology, Elsevier, 2008, 2393–2397. DOI: 10.101 6/B978 -0080_45405-4.00064-1.
- [9] CARBONELL G., TARAZONA J., Terrestrial microcosms and multispecies soil systems, Encyclopedia of Toxicology, Elsevier, 2014, 486–489. DOI: 10.1016/B978-0-12-386454-3.00581-9.
- [10] FAULWETTER J.L, GAGNON V., SUNDBERG C., CHAZARENC F., BURR M.D., BRISSON J., CAMPER A.K., STEIN O.R., Microbial processes influencing performance of treatment wetlands. A review, Ecol. Eng., 2009, 35 (6), 987–1004. DOI: 10.1016/j.ecoleng.2008.12.030.
- [11] FARGAŠOVÁ A., Ecotoxicological Bioassays, Perfekt, Bratislava 2009 (in Slovak).
- [12] SRIVASTAVA D.S., KOLASA J., BENGTSSON J., GONZALEZ A., LAWLER S.P., MILLER T.E., MUNGUIA P., ROMANUK T., SCHNEIDER D.C., TRZCINSKI M.K., Are natural microcosms useful model systems for ecology?, Trends Ecol. Evol., 2004, 19 (7), 379–384. DOI: 10.1016/j.tree.2004.04.010.
- [13] CHAPPELL C.R., FUKAMI T., Nectar yeasts. A natural microcosm for ecology, Yeast, 2018, 35 (6), 417–423. DOI: 10.1002/yea.3311.
- [14] SANDOVAL-HERAZO L.C., ALVARADO-LASSMAN A., MARÍN-MUÑIZ J.L., MÉNDEZ-CONTRERAS J.M., ZAMORA-CASTRO S.A., Effects of the use of ornamental plants and different substrates in the removal of wastewater pollutants through microcosms of constructed wetlands, Sustainability, 2018, 10 (5), 5. DOI: 10.3390/su10051594.
- [15] SANDOVAL L.C., MARÍN-MUÑIZ J.L., ZAMORA-CASTRO S.A., SANDOVAL-SALAS F., ALVARADO- -LASSMAN A., Evaluation of wastewater treatment by microcosms of vertical subsurface wetlands in partially saturated conditions planted with ornamental plants and filled with mineral and plastic substrates, Int. J. Environ. Res. Public Health, 2019, 16 (2), 167. DOI: 10.3390/ijerph16020167.
- [16] CRISAFI F., GENOVESE M., SMEDILE F., RUSSO D., CATALFAMO M., YAKIMOV M., GIULIANO L., DENARO R., Bioremediation technologies for polluted seawater sampled after an oil-spill in Taranto Gulf (Italy). A comparison of biostimulation, bioaugmentation and use of a washing agent in microcosm studies, Mar. Pollut. Bull., 2016, 106, 1–2, 119–126. DOI: 10.1016/j.marpolbul.2016.03.017.
- [17] CHENG S., YOSHIKAWA J.K, CROSS J.S., Effects of nano/microplastics on the growth and reproduction of the microalgae, bacteria, fungi, and Daphnia magna in the microcosms, Environ. Technol. Innov., 2023, 31, 103211. DOI: 10.1016/j.eti.2023.103211.
- [18] GRGIĆ I., CETINIĆ K.A., KARAČIĆ Z., PREVIŠIĆ A., ROŽMAN M., Fate and effects of microplastics in combination with pharmaceuticals and endocrine disruptors in freshwaters. Insights from a microcosm experiment, Sci. Total Environ., 2023, 859, 160387. DOI: 10.1016/j.scitotenv.2022.160387.
- [19] ZHU M., YIN H., YUAN Y., LIU H., QI X., REN Y., DANG Z., Discrepancy strategies of sediment abundant and rare microbial communities in response to floating microplastic disturbances. Study using a microcosmic experiment, Sci. Total Environ., 2022, 835, 155346. DOI: 10.1016/j.scitotenv.2022.155346.
- [20] FANG C., HE Y., YANG Y., FU B., PAN S., JIAO F., WANG J., YANG H., Laboratory tidal microcosm deciphers responses of sediment archaeal and bacterial communities to microplastic exposure, J. Hazard. Mater., 2023, 458, 31813. DOI: 10.1016/j.jhazmat.2023.131813.
- [21] TAMAYO-BELDA M., PÉREZ-OLIVARES A.V., PULIDO-REYES G., MARTIN-BETANCOR K., GONZÁLEZ- -PLEITER M., LEGANÉS F., MITRANO D.M., ROSAL R., FERNÁNDEZ-PIÑAS F., Tracking nanoplastics in freshwater microcosms and their impacts to aquatic organisms, J. Hazard. Mater., 2023, 445, 130625. DOI: 10.1016/j.jhazmat.2022.130625.
- [22] JING Y., MILTNER A., EGGEN T., KÄSTNER M., NOWAK K.M., Microcosm test for pesticide fate assessment in planted water filters: 13C,15N-labeled glyphosate as an example, Water Res., 2022, 226, 119211. DOI: 10.1016/j.watres.2022.119211.
- [23] KUMWIMBA M.N., HUANG J., DZAKPASU M., AJIBADE F.O., LI X., SANGANYADO E., GUADIE A., ŞENEL E., MUYEMBE D.K., Enhanced nutrient removal in agro-industrial wastes-amended hybrid floating treatment wetlands treating real sewage: Laboratory microcosms to field-scale studies, Chemosphere, 2023, 330, 138703. DOI: 10.1016/j.chemosphere.2023.138703.
- [24] ZHANG J., LI Y., TAN Y., ZHANG Y., LI R., ZHOU L., WANG M., The enantioselective environmental fate of mandipropamid in water-sediment microcosms. Distribution, degradation, degradation pathways and toxicity assessment, Sci. Total Environ., 2023, 891, 164650. DOI: 10.1016/j.scitotenv.2023.164650.
- [25] LI S., LIAO Y., PANG Y., DONG X., STROUS M., JI G., Denitrification and dissimilatory nitrate reduction to ammonia in long-term lake sediment microcosms with iron(II), Sci. Total Environ., 2022, 807, 150835. DOI: 10.1016/j.scitotenv.2021.150835.
- [26] CAPLETTE J.N., GFELLER L., LEI D., LIAO J., XIA J., ZHANG H., FENG X., MESTROT A., Antimony release and volatilization from rice paddy soils: Field and microcosm study, Sci. Total Environ., 2022, 842, 156631. DOI: 10.1016/j.scitotenv.2022.156631.
- [27] CHANG J., PENG D., DENG S., CHEN J., DUAN C., Efficient treatment of mercury(Ⅱ)-containing wastewater in aerated constructed wetland microcosms packed with biochar, Chemosphere, 2022, 290, 133302. DOI: 10.1016/j.chemosphere.2021.133302.
- [28] LOWN L., VERNAZ J.E., DUNHAM-CHEATHAM S.M., GUSTIN M.S., HIIBEL S.R., Phase partitioning of mercury, arsenic, selenium, and cadmium in Chlamydomonas reinhardtii and Arthrospira maxima microcosms, Environ. Pollut., 2023, 329, 121679. DOI: 10.1016/j.envpol.2023.121679.
- [29] WANG H., ZHANG M., XUE J., LV Q., YANG J., HAN X., Performance and microbial response in a multi-stage constructed wetland microcosm co-treating acid mine drainage and domestic wastewater, J. Environ. Chem. Eng., 2021, 9, 106786. DOI: 10.1016/j.jece.2021.106786.
- [30] CHAI G., WANG D., ZHANG Y., WANG H., LI J., JING X., MENG H., WANG Z., GUO Y., JIANG C., LI H., LIN Y., Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage. Performance dynamics and microbial community comparison, J. Environ. Manage., 2023, 330, 117148. DOI: 10.1016/j.jenvman.2022.117148.
- [31] ELMAHDY M.E.I., MAGRI M.E., GARCIA L.A., FONGARO G., BARARDI C.R.M., Microcosm environment models for studying the stability of adenovirus and murine norovirus in water and sediment, Int. J. Hyg. Environ. Health, 2018, 221 (4), 734–741. DOI: 10.1016/j.ijheh.2018.04.002.
- [32] WANG Y., NI K., ZHANG Z., XU N., LEI C., CHEN B., ZHANG Q., SUN L., CHEN Y., LU T., QIAN H., Meta-transcriptome deciphers the effects of non-antibiotic antimicrobial agents on antibiotic resistance and virulence factors in freshwater microcosms, Aquat. Toxicol., 2023, 258, 106513. DOI: 10.1016/j.aquatox. 2023.106513.
- [33] ZHANG Z., WANG Y., CHEN B., LEI C., YU Y., XU N., ZHANG Q., WANG T., GAO W., LU T., GILLINGS M., QIAN H., Xenobiotic pollution affects transcription of antibiotic resistance and virulence factors in aquatic microcosms, Environ. Pollut., 2022, 306, 119396. DOI: 10.1016/j.envpol.2022.119396.
- [34] MAHANEY A.P., FRANKLIN R.B., Persistence of wastewater-associated antibiotic resistant bacteria in river microcosms, Sci. Total Environ., 2022, 819, 153099. DOI: 10.1016/j.scitotenv.2022.153099.
- [35] ONALENNA O., RAHUBE T.O., Assessing bacterial diversity and antibiotic resistance dynamics in waste- water effluent-irrigated soil and vegetables in a microcosm setting, Heliyon, 2022, 8, 3, 109089. DOI: 10.1016/j.heliyon.2022.e09089.
- [36] ISHAK S., ALLOUCHE M., HARRATH A.H., ALWASEL S., BEYREM H., PACIOGLU O., BADRAOUI R., BOUFAHJA F., Effects of the antidepressant paroxetine on migratory behaviour of meiobenthic nematodes. Computational and open experimental microcosm approach, Mar. Pollut. Bull., 2022, 177, 113558. DOI: 10.1016/j.marpolbul.2022.113558.
- [37] PAGSUYOIN S.A., LUO J., CHAIN F.J., Effects of sewer biofilm on the degradation of drugs in sewage. A microcosm study, J. Hazard. Mater, 2022, 424, D, 127666. DOI: 10.1016/j.jhazmat.2021.127666.
- [38] MARÍN-MUÑIZ J.L., GARCÍA-GONZÁLEZ M.C., RUELAS-MONJARDÍN L.C., MORENO-CASASOLA P., Influence of different porous media and ornamental vegetation on wastewater pollutant removal in vertical subsurface flow wetland microcosms, Environ. Eng. Sci., 2018, 35, 2, 88–94. DOI: 10.1089/ees.2017.0061.
- [39] WANG C., YUAN Z., SUN Y., YAO X., LI R., LI S., Effect of chronic exposure to textile wastewater treatment plant effluents on growth performance, oxidative stress, and intestinal microbiota in adult zebrafish (Danio rerio), Front. Microbiol., 2021, 12, 782611. DOI: 10.3389/fmicb.2021.782611.
- [40] MARÍN-MUÑIZ J.L., HERNÁNDEZ M.E., GALLEGOS-PÉREZ M.P., AMAYA-TEJEDA S.I., Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants, Ecol. Eng., 2020, 147, 105658. DOI: 10.1016/j.ecoleng. 2019.105658.
- [41] LUO W., XIE W., LI Y., LIU Y., YE X., PENG T., WANG H., HUANG T., HU Z., The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms, Chemo-sphere, 2023, 325, 138412. DOI: 10.1016/j.chemosphere.2023.138412.
- [42] YU F., LUO W., XIE W., LI Y., MENG S., KAN J., YE X., PENG T., WANG H., HUANG T., HU Z., Community reassemblies of eukaryotes, prokaryotes, and viruses in the hexabromocyclododecanes-contaminated microcosms, J. Hazard. Mater., 2022, 436, 129159. DOI: 10.1016/j.jhazmat.2022.129159.
- [43] MENG K., TENG Y., REN W., WANG B., GEISSEN V., Degradation of commercial biodegradable plastics and temporal dynamics of associated bacterial communities in soils: A microcosm study, Sci. Total Environ., 2023, 865, 161207. DOI: 10.1016/j.scitotenv.2022.161207.
- [44] FERNÁNDEZ M.D., PRO J., ALONSO C., ARAGONESE P., TARAZONA J.V., Terrestrial microcosms in a feasibility study on the remediation of diesel-contaminated soils, Ecotoxicol. Environ. Saf., 2011, 74 (8), 2133–2140. DOI: 10.1016/j.ecoenv.2011.08.009.
- [45] LÁZARO-MASS S., GÓMEZ-CORNELIO S., CASTILLO-VIDAL M., ALVAREZ-VILLAGOMEZ C.A., QUINTANA P., DE LA ROSA-GARCÍA S., Biodegradation of hydrocarbons from contaminated soils by microbial consortia: A laboratory microcosm study, Electron. J. Biotechnol., 2023, 61, 24–32. DOI: 10.1016/j.ejbt.2022.10.002.
- [46] BURROWS L., EDWARDS C., The use of integrated soil microcosms to predict effects of pesticides on soil ecosystems, Eur. J. Soil Biol., 2002, 38, 245–249. DOI: 10.1016/S1164-5563(02)01153-6.
- [47] ROMERO F., HILFIKER S., EDLINGER A., HELD A., HARTMAN K., LABOUYRIE M., VAN DER HEIJDEN M.G.A., Soil microbial biodiversity promotes crop productivity and agroecosystem functioning in experimental microcosms, Sci. Total Environ., 2023, 885, 163683. DOI: 10.1016/j.scitotenv.2023.163683.
- [48] D’AQUINO L., LANZA B., GAMBALE E., SIGHICELLI M., MENEGONI P., MODARELLI G.C., RIMAURO J., CHIANESE E., NENNA G., FASOLINO T., D’URSO G., PIACENTE S., MONTORO P., Growth and metabolism of basil grown in a new-concept microcosm under different lighting conditions, Sci. Hort., 2022, 299, 111035. DOI: 10.1016/j.scienta.2022.111035.
- [49] GORODYLOVA N., SERON A., MICHEL K., JOULIAN C., DELORME F., SOULIER C., BRESCH S., GARREAU C., GIOVANNELLI F., MICHEL C., Zeolite-supported biofilms as inoculants for the treatment of MCPA- -polluted soil and sand by bioaugmentation. A microcosm study, Appl. Soil Ecol., 2022, 180, 104614. DOI: 10.1016/j.apsoil.2022.104614.
- [50] GAUTAM P., PANDEY A.K., GUPTA A., DUBEY S.K., Microcosm-omics centric investigation reveals elevated bacterial degradation of imidacloprid, Environ. Pollut., 2023, 324, 121402. DOI: 10.1016/j. envpol.2023.121402.
- [51] EGENE C.E., REGELINK I., SIGURNJAK I., ADANI F., TACK F.M.G., MEERS E., Greenhouse gas emissions from a sandy loam soil amended with digestate-derived biobased fertilisers. A microcosm study, Appl. Soil Ecol., 2022, 178, 104577. DOI: 10.1016/j.apsoil.2022.104577.
- [52] ZHANG Y., DUY S.V., WHALEN J.K., MUNOZ G., GAO X., SAUVÉ S., Cyanotoxins dissipation in soil: Evidence from microcosm assays, J. Hazard. Mater., 2023, 454, 131534. DOI: 10.1016/j.jhazmat.2023.131534.
- [53] HEDFI A., ALLOUCHE M., HOINEB F., ALI B.M., HARRATH A.H., ALBESHR M.F., MAHMOUDI E., BEYREM H., KARACHLE P.K., URKMEZ D., PACIOGLU O., BADRAOUI R., BOUFAHJA F., The response of meiobenthinc sediment-dwelling nematodes to pyrene. Results from open microcosms, toxicokinetics and in silico molecular interactions, Mar. Pollut. Bull., 2022, 185, A, 114252. DOI: 10.1016/j.marpolbul.2022.114252.
- [54] MANGWANI N., KUMARI S., DAS S., Marine bacterial biofilms in bioremediation of polycyclic aromatic hydrocarbons (PAHs) under terrestrial condition in a soil microcosm, Pedosphere, 2017, 27, 3, 548–558. DOI: 10.1016/S1002-0160(17)60350-3.
- [55] MIECZAN T., BARTKOWSKA A., The effect of experimentally simulated climate warming on the micro-biome of carnivorous plants. A microcosm experiment, Glob. Ecol. Conserv., 2022, 34, 102040. DOI: 10.1016/j.gecco.2022.e02040.
- [56] YANG X., SHAO M., LI T., Effects of terrestrial isopods on soil nutrients during litter decomposition, Geoderma, 2020, 376, 114546. DOI: 10.1016/j.geoderma.2020.114546.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c59d16ff-d8ae-436b-acc8-211755e056b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.