PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metals distribution on the surface of quartz fiber filters used for particulate matter collection

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozkład metali na powierzchni filtrów kwarcowych stosowanych do poboru pyłu zawieszonego
Języki publikacji
EN
Abstrakty
EN
Presented study aimed to determine metals distribution on the quartz fiber filters surface coated with particulate matter by using high and low-volume samplers. The distribution pattern was tested using two different sub-sampling schemes. Each sub-sample was mineralized in the nitric acid in a microwave oven. An analysis was performed by means of atomic absorption spectroscopy with electrothermal atomization GF-AAS technique, and the determined elements were: As, Cd, Pb and Ni. A validation of the analytical procedure was carried out using NIES 28 Urban Aerosols standard reference material. It was assumed that metal is distributed uniformly if its normalized concentrations on a single sub-sample is within ±15% of the mean concentration over the whole filter. The normalized concentrations values exceed this range, indicating a non-homogenous metals distribution. There were no statistically significant differences in metals concentrations between particular sub-samples in the function of its position along the filters diameter.
PL
Praca miała na celu zbadanie rozkładu metali na powierzchni filtrów kwarcowych pokrytych pyłem zawieszonym zebranym przy użyciu wysoko- oraz niskoprzepływowych analizatorów powietrza. Rozkład badano przy użyciu dwóch różnych systemów podpróbkowania filtrów. Każdą podpróbkę mineralizowano w kwasie azotowym w piecu mikrofalowym. Analizę przeprowadzono techniką absorpcyjnej spektroskopii atomowej z atomizacją elektrotermiczną GT–AAS, za pomocą której oznaczano następujące pierwiastki: As, Cd, Pb i Ni. Walidację procedury analitycznej przeprowadzono przy użyciu certyfikowanego materiału odniesienia NIES28 Urban Aerosols. Założono, że metal jest rozłożony na powierzchni filtra równomiernie, jeśli jego znormalizowane stężenie na pojedynczej podpróbce mieści się w zakresie ±15% średniego stężenia na całym filtrze. Ponieważ wartości znormalizowanych stężeń metali przekraczały ten zakres, wskazywało to jednoznacznie na nierównomierny ich rozkład na powierzchni filtrów. Nie stwierdzono statystycznie istotnych różnic w stężeniach metali pomiędzy poszczególnymi fragmentami filtrów w funkcji ich położenia względem średnicy filtrów.
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 28 poz., tab., wykr.
Twórcy
  • Silesian University of Technology, Poland Faculty of Energy and Environmental Engineering
  • Institute of Environmental Engineering of the Polish Academy of Sciences, Poland
autor
  • Silesian University of Technology, Poland Faculty of Energy and Environmental Engineering
  • Institute of Environmental Engineering of the Polish Academy of Sciences, Poland
Bibliografia
  • [1] Anglov, J.T.B., Holst, E., Dyg, S. & Christensen, J.M. (1993). Iron, manganese, copper and titanium in welding fume dust on filters for internal and external quality assurance, Fresenius Journal of Analytical Chemistry, 345, pp. 335–339.
  • [2] Brown, R.J.C., Jarvis K.E., Disch, B.A., Goddard, S.L. & Brown, A.S. (2009). Spatial inhomogeneity of metals in particulate matter on ambient air filters determined by LA-ICP-MS and comparison with acid digestion ICP-MS, Journal of Environmental Monitoring, 11, pp. 2022–2029.
  • [3] Brown, R.J.C. & Keates, A.C. (2011). Spatial inhomogeneity of anions in ambient particulate matter collected on air filters: Determination using a drift-corrected ion chromatography technique, Talanta, 84, pp. 918–923.
  • [4] BS EN 14907:2006, “Ambient air quality – Standard gravimetric method for determining the mass fraction of PM2.5 particulate matter”.
  • [5] Chartier, K.L. & Weitz, M.A. (1998). A comparison of filter types in the collection and gravimetric determination of airborne particulate matter less than 2.5 microns (PM2.5), Journal of the Air & Waste Management Association, 48, pp. 1199–1203.
  • [6] Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe.
  • [7] Dreetz, C.D. & Lund, W. (1992). Air-intake filters used for multi-element analysis of airborne particulate matter by inductively coupled plasma atomic emission spectrometry, Analitica Chimica Acta, 262, pp. 299–305.
  • [8] EPA (2008). Laboratory Determination of Particle Deposition Uniformity on Filters Collected Using Federal Reference Method Samplers. (http://www.epa.gov/ttn/naaqs/standards/pb/data/20081007LabDetermination.pdf (07.09.2015))
  • [9] Finlayson-Pitts, B.J. & Pitts, J.N. (1986). Atmospheric chemistry: fundamentals and experimental techniques, Wiley, New York 1986.
  • [10] IOŚ-PIB (2011). The analysis of PM10 and PM2.5 ambient air pollution including its chemical composition and the influence of natural sources, Zabrze. Final report. (pp. 2–274) (http://www.gios.gov.pl/zalaczniki/artykuly/analiza_stanu_zanieczyszczenia_PM10_2_5.pdf (07.09.2015)). (in Polish)
  • [11] Kobus, D., Iwanek, J., Mitosek, G. & Mill, W. (2007). Organization of air quality monitoring data collection in Poland. Review of available air quality data, Institute of Environmental Protection, Warsaw 2007.
  • [12] Leśniok, M. (2011). Changeability of air pollution in Katowice Region (Central Europe, Southern Poland), Advanced Air Pollution, Dr. Farhad Nejadkoorki (Ed.), ISBN: 978-953-307-511-2, InTech, DOI: 10.5772/22013. (http://www.intechopen.com/books/advanced-air-pollution/changeability-of-air-pollution-in-katowice-region-centraleurope-southern-poland-(07.09.2015))
  • [13] Low, P.S. & Hsu, G.J. (1990). Determination of atmospheric lead by Zeeman solid sampling graphite furnace atomic absorption spectrometry (GFAAS), Fresenius Journal of Analytical Chemistry, 337, pp. 299–305.
  • [14] Marrero, J., Rebagliati, R.J., Gomez, D. & Smichowski, P. (2005). A study of uniformity of elements deposition on glass fiber filters after collection of airborne particulate matter (PM-10), using a high-volume sampler, Talanta, 68, pp. 442–447.
  • [15] Moura, M, Vasconcelos, M. & Machado, A. (1987). Determination of lead in atmospheric aerosols by electrothermal atomization atomic-absorption spectrometry with direct introduction of filters into the graphite-furnace, Journal of Analytical Atomic Spectrometry, 2, pp. 451–454.
  • [16] PN-EN 12341:2006a: Air quality – Determination of the PM10 fraction of suspended particulate matter – Reference method and field test procedure to demonstrate reference equivalence of measurement methods.
  • [17] PN-EN 14907:2006b: Ambient air quality – Standard gravimetric measurement method for the determination of the PM2,5 mass fraction of suspended particulate matter.
  • [18] Pöykiö, R., Peramaki, P. & Ronkkomaki, H. (2003). The homogeneity of heavy metal deposition on glass fibre filters collected using a high-volume sampler in the vicinity of an opencast chrome mine complex at Kemi, Northern Finland, Analytical and Bioanalytical Chemistry, 375, pp. 476–481.
  • [19] Prządka, Z., Skotak, K. & Bruszewski, H. (2012). Uniformity of distribution of particulate matter on filters used in high volume samplers, Ochrona Środowiska i Zasobów Naturalnych, 54, pp. 236–247.
  • [20] Regulation of the Ministry of Environment of 24 August 2012 concerning evaluation of substances levels in the air, Journal of Laws 2012, item 1031.
  • [21] Regulation of the Minister of Environment of 26 January 2010 on the reference values for certain substances in the air (DzU Nr 16, poz. 87), Warszawa 2010
  • [22] Rogula-Kozłowska, W., Błaszczak, B., Szopa, S., Klejnowski, K., Sówka, I., Zwoździak, A., Jabłońska, M. & Mathews, B. (2013). PM(2.5) in the central part of Upper Silesia, Poland: concentrations, elemental composition, and mobility of components, Environmental Monitoring and Assessment, 185, pp. 581–601.
  • [23] Rogula-Kozłowska, W., Kozielska, B. & Klejnowski, K. (2013). Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in Southern Poland, Bulletin of Environmental Contamination And Toxicology, 91, pp. 349–355.
  • [24] Rogula-Kozlowska, W., Blaszczak, B. & Klejnowski, K. (2011). Concentrations of PM2.5, PM2.5-10 and PM-related elements at two heights in an urban background area in Zabrze (Poland), Archives of Environmental Protection, 37, pp. 31–47.
  • [25] Steinhoff, G., Haupt, O. & Dannecker, W. (2000). Fast determination of trace elements on aerosol-loaded filters by X-ray fluorescence analysis considering the inhomogeneous elemental distribution, Fresenius Journal of Analytical Chemistry, 366, pp. 174–177.
  • [26] Viana, M., Kuhlbusch, T.A.J., Querol, X., Alastuey, A., Harrison, R.M., Hopke, P.K., Winiwarter, W., Vallius, W., Szidat, S., Prévôt, A.S.H., Hueglin, C., Bloemen, H., Wåhlin, P., Vecchi, R., Miranda, A.I., Kasper-Giebl, A., Maenhaut, W. & Hitzenberger, R. (2008). Source apportionment of particulate matter in Europe: A review of methods and results, Aerosol Science, 39, pp. 827–849.
  • [27] Yang, X.J., Wan, P.Y. & Foley, R. (2012). Effect of sample digestion, air filter contamination, and post-adsorption on the analysis of trace elements in air particulate matter, Clean-Soil, Air, Water, 40, pp. 1217–1221.
  • [28] Zdrojewski, A., Quickert, N. & Dubois, L. (1973). The accurate measurement of cadmium in airborne particulates, International Journal of Environmental Analytical Chemistry, 2, pp. 331–341.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f94aa2af-0821-47b9-9202-26a636cf9272
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.