PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of metal ions on the adsorption of octyl hydroxamic acid in the flotation of bastnaesite and the adsorption mechanism

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence mechanism of metal ions on the adsorption of octyl hydroxamic acid (OHA) by bastnaesite in a flotation system was studied by flotation experiments, adsorption capacity tests, X-ray photoelectron spectroscopy (XPS) characterization, and density functional theory (DFT) study. From the experimental results, it can be seen that the flotation and the adsorption capacity tests showed that the single metal ions Ca2+, Ba2+, and Fe3+ promoted the flotation recovery of bastnaesite, and the order of their ability was Ba2+>Fe3+>Ca2+. The addition of mixed metal ions inhibited the adsorption of OHA on the surface of bastnaesite, resulting in a decrease in the flotation recovery of bastnaesite. The XPS analysis showed that the N concentration on the surface of bastnaesite after single metal ion action was significantly higher than that without metal ion action, while the N concentration on the surface of bastnaesite after mixed metal ion action was significantly lower than that without metal ion action. When Ca2+, Ba2+, and Fe3+ ions were added, new peaks appeared at 401.24 eV, 397.68 eV, and 397.19 eV in the N1s fitting peaks, respectively, which may be caused by the formation of N-M (OH) chemical bonds between M(OH)+ (M: Ca2+, Ba2+, Fe3+) and nitrogen atoms in OHA. This indicated that metal ions Ca2+, Ba2+, and Fe3+ form metal chelated with nitrogen atoms in OHA. The DFT study on the (100) surface of bastnaesite also showed that the doping of metal ions showed a stronger spontaneity and enhanced adsorption capacity due to the decrease of adsorption energy between OHA and bastnaesite surface. There were two adsorption sites of bastnaesite, one is that the Ce atom adsorbs two oxygen atoms of OHA to form a five-membered chelate, and the other adsorption site was that O-M(OH) on bastnaesite interacts with OHA; Therefore, the configuration of the oxygen atom adsorption site is O-M-O-N bond, during which M(OH)n+(n:1,2) loses OH, and the N-O-H chemical bond on OHA loses H+ to form an H2O molecule, a typical dehydration reaction, so the adsorption is more stable. Therefore, the surface of bastnaesite has two adsorption forms with OHA, one is R-NH-O-M-CeFCO3 and R-NH-O-CeFCO3.
Rocznik
Strony
art. no. 192809
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Mining and Coal School of Inner Mongolia University of Science and Technology, Baotou, 014010, China
autor
  • Rare-Earth School of Inner Mongolia University of Science and Technology, Baotou, 014010, China
autor
  • Mining and Coal School of Inner Mongolia University of Science and Technology, Baotou, 014010, China
autor
  • Inner Mongolia Baotou Steel Union Co., Ltd. Barun Mining Branch, Baotou, 014010, China
Bibliografia
  • BUDI, A., STIPP, S.L.S., ANDERSSON, M.P., 2018. Calculation of entropy of adsorption for small molecules on mineral surfaces. J. Phys. Chem. 122, 8236–8243.
  • CAO, S.M., CAO, Y.J., MA, Z.L., LIAO, Y.F., 2018. Metal ion release in bastnaesite flotation system and implications for flotation. Minerals. 8(5), 203.
  • CAO, S.M., CAO, Y.J., MA, Z.L., LIAO, Y.F., 2019. The adsorption mechanism of Al(III) and Fe(III) ions on bastnaesite surfaces. Physicochem. Probl. Miner. Process. 55 (1), 97–107.
  • CAO, Z., CAO, Y.D., QU, Q.Q., ZHANG, J.S., MU, Y.F., 2019. Separation of bastnäsite from fluorite using ethylenediamine tetraacetic acid as depressant. Miner. Eng.134, 134–141.
  • CHEN, L.Z., HOU, Q.L., YIN, R.M., 2012. The mechanism of calcium ions effects on quartz collection in the system of dodecyl sulphonate. Journal of Hunan University of Technology. 26(6), 8-12.
  • CHEN, P., ZHAI, J.H., SUN, W., HU, Y.H., YIN, Z.G., 2017. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector. Miner. Eng. 111, 100–107.
  • DáVILA-PULIDO, I.G., URIBE-SALAS, A., áLVAREZ-SILVA METAL., 2015. The role of calcium in xanthate adsorption onto sphalerite. Miner. Eng. 71,113−119.
  • DUSHYANTHA, N., BATAPOLA, N., ILANKOON, I.M.S.K., ROHITHA, S., PREMASIRI, R., ABEYSINGHE, B., RATNAYAKE, N., DISSANAYAKE, K., 2020. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 122, 103521.
  • ESPIRITU ERL, DA SILVA GR, AZIZI D, LARACHI F, WATERS KE., 2018. The effect of dissolved mineral species on bastnäsite, monazite and dolomite flotation using benzohydroxamate collector. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 539, 31934.
  • GAO, Y.S., GAO, Z.Y., SUN, W., 2017. Research progress of influence of metal ions on mineral flotation behavior and underlying mechanism. The Chinese Journal of Nonferrous Metals. 27(4), 859−868.
  • GAO, Z., JIANG Z., SUN, W., YUE, S., 2021. Typical roles of metal ions in mineral flotation: A review. Transactions of Nonferrous Metals Society of China., 31(7), 2081-2101.
  • HUANG, W.X., LIU, W.B., ZHONG, W.L., 2021. Effects of common ions on the flotation of fluorapatite and dolomite with oleate collector. Miner. Eng. 174, 107213.
  • JORDENS, A., CHENG, Y., WATERS, K.E., 2013. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 41, 97–114.
  • LI, N., MA, Y, WANG, Q.W., HOU, S.H., LI, E.D., WANG, J.J., 2019. Spectroscopic Study on the Interaction between Baiyunobo Rare Earth Minerals and Hydroxamic Acid Collector. Chinese Rare Earths. 553, 210–219.
  • LIN, Y.M., CHEN, C., WANG, W.Q., JIANG, Y., CAO, X., 2020. Beneficial effects and mechanism of lead ions for bastnaesite flotation with octyl hydroxamic acid collector. Miner. Eng. 148, 106199.
  • LIU, M., CHEN, J.H., CHEN, Y., ZHU, Y.G., 2020. Interaction between smithsonite and carboxyl collectors with different molecular structure in the presence of water: A theoretical and experimental study. Appl. Surf. Sci. 510, 145410.
  • LIU, C., 2023. A review of flotation reagents for bastnäsite-(Ce) rare earth ore. Advances in Colloid and Interface Science. 321, 103029.
  • LONG, K.R., GOSEN, B.S.V., FOLEY, N.K., CORDIER, D., 2012. The principal rare earth elements deposits of the United States: A Summary of domestic deposits and a global perspective, Springer. Dordrecht, The Netherlands. 131–155.
  • MOONCHUL, J., BOGALE, T., CRAIG, D., 2022. Influence of monovalent and divalent cations on monazite flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 653.
  • QI, J., FAN, H.L., LIU, G.Y., 2020. β-Amino-hydroxamate surfactants: Preparation, and adsorption mechanism in bastnaesite flotation. Sep. Purif. Technol. 240, 116634.
  • SRINIVASAN, S.G., SHIVARAMAIAH, R., KENT, P.R.C., STACK, A.G., NAVROTSKY, A., RIMMAN, R.E., ANDERKO, A., BRYANTSEV, VS., 2016. crystal structures, surface stability, and water adsorption energies of la-bastnäsite via density functional theory and experimental studies. J. Phys. Chem. 120(30), 16767–16781.
  • TIAN, M.G., LIU, R.Q., GAO, Z.Y., CHEN, P., HAN, H.S., WANG, L., ZHANG, C.Y., SUN, W., HU, Y.H., 2018. Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector. Miner. Eng. 119, 31–37.
  • WANG, Z.J., WU, H.Q., XU, Y.B., SHU, K.Q., FANG, S., XU, L.H., 2020. The effect of dissolved calcite species on the flotation of bastnaesite using sodium oleate. Miner. Eng. 145, 106095.
  • WANHALA., ANNA K., DOUGHTY, BENJAMIN, BRYANTSEV, VYACHESLAV S., WU., LILI., MAHURIN., SHANNON M., JANSONE- POPOVA., SANTA., CHESHIRE., MICHAEL C., NAVROTSKY., ALEXANDRA., STACK., ANDREW G., 2019. Adsorption mechanism of alkyl hydroxamic acid onto bastnäsite: Fundamental steps toward rational collector design for rare earth elements. J. Colloid Interface Sci. 553, 210–219.
  • WEI, Q., DONG, L.Y., JIAO, F., QIN, W.Q., 2019. Use of citric acid and Fe(III) mixture as depressant in calcite flotation. Colloids Surf. 578, 123579.
  • XU, Y., XU, L., WU, H., WANG, Z., SHU, K., FANG, S., ZHANG, Z., 2020. Flotation and co–adsorption of mixed collectors octano hydroxamic acid/sodium oleate on bastnaesite. Journal of Alloys and Compounds. 819, 152948.
  • XU, L., LIU, B., JIAO, H., GAO, S.L., 2023. Research progress of coordination effect in flotation capture reagents of rare earth ore. Chinese Journal of Chemical Education. 44(22):7-13.
  • YIN, W.Z., TANG, Y., 2021. Current Status in Study of Genetic Flotation of Minerals. Metal Mine. 01, 42-54.
  • YU, X.Y., ZHANG, R.R., YANG, S.Y., LIU, C., HE, G.C., WANG, H.L., WANG, J.L., 2020. A novel decanedioic hydroxamic acid collector for the flotation separation of bastnäsite from calcite. Miner. Eng. 151, 106306.
  • YU, L., XIN, Y., YUAN, Z.T., 2022. Effect of lead ions on the selective flotation of ilmenite against titanaugite using octyl hydroxamic acid as collector. Applied Surface Science. 603,154458.
  • YU, A.M., DING, Z., LI, J., YUAN, J.Q., BAI, S.J., 2023. Research progress on activation mechanism of typical metal ions on mineral flotation. Conservation and Utilization of Mineral Resources. 43(04),114-122.
  • ZHANG, J.X., FENG, Y.L., NIU, F.S., 2014. Influence of metal ions in pulp on floatability of kyanite minerals. Journal of Northeastern University. Natural Science. 35(12),1787−1791.
  • ZHENG, Q., QIAN, Y., ZOU, D., 2021. Surface mechanism of Fe3+ ions on the improvement of fine monazite flotation with octyl hydroxamate as the collector. Frontiers in Chemistry. 9, 700347.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c000ed6d-49e5-4b0a-8482-f7ada70b1feb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.