PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of digital filtering in evaluation of surface roughness

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface roughness is an important indicator in the evaluation of machining and product quality, as well as a direct factor affecting the performance of components. A rapidly developing filtering technology has become the main means of extracting surface roughness. The International Organization for Standardization (ISO) is constantly updating and improving the standard system for filtering technology in order to meet the requirements of technological development. Based on the filters already accepted by the international standard ISO 16610, this study briefly introduces the filtering principle of each filter, reviews the development of each filter in the application of surface roughness, and compares the advantages and limitations of their individual performances. The application range of each filter is summarized and, finally, the future direction of the digital filtering used in surface roughness is extrapolated.
Rocznik
Strony
217--253
Opis fizyczny
Bibliogr. 102 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
  • Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
  • Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
  • Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
autor
  • Beijing University of Technology, Faculty of Materials and Manufacturing, Beijing Engineering Research Center of Precision Measurement Technology and Instruments, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
Bibliografia
  • [1] Wu, J. H., Yao, Z. Q., & Jin, Y. (2004). Application of the Hilbert-Huang Transform to Pick up Surface Roughness. Materials Science Forum, 471, 668-671. https://doi.org/10.4028/www.scientific.net/msf.471-472.668
  • [2] Su, Y., Xu, Z., & Jiang, X. (2008). GPGPU-based Gaussian Filtering for Surface Metrological Data Processing. Information Visualisation, 2008. IV ’08. 12th International Conference, IEEE, 94-99. https://doi.org/10.1109/iv.2008.14
  • [3] ISO 3274:1975. Instruments for the Measurement of Surface Roughness by the Profile Method - Contact (stylus) Instruments of consecutive Profile Transformation - Contact Profile Meters, System M.
  • [4] Whitehouse, D. J. (1967). Improved Type of Wavefilter for Use in Surface-Finish Measurement. ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 182(11), 306-318. https://doi.org/10.1243/pime_conf_1967_182_328_02
  • [5] Raja, J., & Radhakrishnan, V. (1979). Digital filtering of surface profiles. Wear, 57(1), 147-155. https://doi.org/10.1016/0043-1648(79)90148-0
  • [6] ISO 11562:1996. Geometrical Product Specification (GPS) - Surface Texture: Profile Method - Metrological Characteristics of Phase Correct Filters.
  • [7] Raja, J., Muralikrishnan, & B., Fu, S. (2002). Recent advances in separation of roughness, waviness and form. Precision Engineering, 26(2), 222-235. https://doi.org/10.1016/s0141-6359(02)00103-4
  • [8] Brinkmann, S., & Bodschwinna, H. (2003). Advanced Gaussian Filters. In: Advanced Techniques for Assessment Surface Topography. Blunt, L., & Jiang, X. (Eds), Kogan Page Ltd., 63-90. https://doi.org/10.1016/b978-190399611-9/50004-9
  • [9] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (2011). Linear Models: Robust Estimation. Robust statistics: the approach based on influence functions. John Wiley & Sons. https://doi.org/10.1002/9781118186435.ch6
  • [10] ISO 13565-1:1996. Geometrical Product Specification (GPS) - Surface Texture: Profile Method Surfaces Having Stratified Functional Properties. Part 1: Filtering and general measurement conditions.
  • [11] ISO 16610-21:2011. Geometrical Product Specifications (GPS) - Filtration - Part 21: Linear profile filters: Gaussian filters.
  • [12] ISO 16610-28:2016. Geometrical Product Specifications (GPS) - Filtration - Part 28: Profile filters: End effects.
  • [13] Raja, J., & Radhakrishnan, V. (1979). Filtering of surface profiles using fast Fourier transform. International Journal of Machine Tool Design and Research, 19(3), 133-141. https://doi.org/10.1016/0020-7357(79)90003-9
  • [14] Krystek, M. (1996). A fast Gauss filtering algorithm for roughness measurements. Precision Engineering, 19(2-3), 198-200. https://doi.org/10.1016/s0141-6359(96)00025-6
  • [15] Hara, S., Tsukada, T., & Sasajima, K. (1998). An in-line digital filtering algorithm for surface roughness profiles. Precision Engineering, 22(4), 190-195. https://doi.org/10.1016/s0141-6359(98)00013-0
  • [16] Yuan, Y. B., Vorburger, T. V., Song, J. F., & Renegar, T. B. (2000). A simplified realization for the Gaussian filter in surface metrology. International Colloquium on Surfaces, Chemnitz (Germany), Jan. 31-Feb. 02, 2000, Dietzsch, M., & Trumpold, H. (Eds.), Shaker Verlag GmbH, Aachen, 133-144.
  • [17] Yuan, Y. B., Qiang, X. F., Song, J. F., & Vorburger, T. V. (2000). A fast algorithm for determining the Gaussian filtered mean line in surface metrology. Precision Engineering, 24(1), 62-69. https://doi.org/10.1016/s0141-6359(99)00031-8
  • [18] Xu, J. B., Wang, S., Nie, J. L., & Xu, X. H. (2016). A kind of robust processing for Gaussian filtering mean line of surface profile. International Forum on Strategic Technology, IEEE, 311-313. https://doi.org/10.1109/ifost.2016.7884114
  • [19] Krystek, M. (1996). Discrete L-spline filtering in roughness measurements. Measurement, 18(2), 129-138. https://doi.org/10.1016/s0263-2241(96)00051-6
  • [20] Brinkmann, S., Bodschwinna, H., & Lemke, H. W. (2001). Accessing roughness in three-dimensions using Gaussian regression filtering. International Journal of Tools Manufacture, 41(13-14), 2153-2161. https://doi.org/10.1016/s0890-6955(01)00082-7
  • [21] Numada, M., Nomura, T., Kamiya, K., Tashiro, H., & Koshimizu, H. (2006). Filter with variable transmission characteristics for determination of three-dimensional roughness. Precision Engineering, 30(4), 431-442. https://doi.org/10.1016/j.precisioneng.2006.01.002
  • [22] Zhang, H., Yuan, Y., & Piao, W. (2010). A universal spline filter for surface metrology. Measurement, 43(10), 1575-1582. https://doi.org/10.1016/j.measurement.2010.09.008
  • [23] Janecki, D. (2011). Gaussian filters with profile extrapolation. Precision Engineering, 35(4), 602-606. https://doi.org/10.1016/j.precisioneng.2011.04.003
  • [24] Janecki, D. (2012). Edge effect elimination in the recursive implementation of Gaussian filters. Precision Engineering, 36(1), 128-136. https://doi.org/10.1016/j.precisioneng.2011.08.001
  • [25] Kondo, Y., Numada, M., Koshimizu, H., Kamiya, K., & Yoshida, I. (2017). Low-pass filter without the end effect for estimating transmission characteristics - Simultaneous attaining of the end effect problem and guarantee of the transmission characteristics. Precision Engineering, 48, 243-253. https://doi.org/10.1016/j.precisioneng.2016.12.007
  • [26] ISO 16610-22:2015. Geometrical Product Specifications (GPS) - Filtration - Part 22: Linear profile filters: Spline filters.
  • [27] Ciarlini, P., Cox, M.G., Pavese, F., & Richter, D. (1997). Advanced Mathematical Tools in Metrology III. Series on Advances in Mathematics for Applied Sciences, Singapore. World Scientific, 45, 1-302. https://doi.org/10.1142/9789814530293
  • [28] Krystek, M. (1996). Form filtering by splines. Measurement, 18(1), 9-15. https://doi.org/10.1016/0263-2241(96)00039-5
  • [29] Numada, M., Nomura, T., Yanagi, K., Kamiya, K., & Tashiro, H. (2007). High-order spline filter and ideal low-pass filter at the limit of its order. Precision Engineering, 31(3), 234-242. https://doi.org/10.1016/j.precisioneng.2006.09.002
  • [30] Zeng, W., Jiang, X., & Scott, P. J. (2011). A generalised linear and nonlinear spline filter. Wear, 271(3-4), 544-547. https://doi.org/10.1016/j.wear.2010.04.010
  • [31] Zhang, H., Yuan, Y., & Piao, W. (2012). The spline filter: A regularization approach for the Gaussian filter. Precision Engineering, 36(4), 586-592. https://doi.org/10.1016/j.precisioneng.2012.04.008
  • [32] Tong, M., Zhang, H., Ott, D., Zhao, X., & Song, J. (2015). Analysis of the boundary conditions of the spline filter. Measurement Science and Technology, 26(9), 095001. https://doi.org/10.1088/0957-0233/26/9/095001
  • [33] He, G., Liu, C., Sang, Y., & Sun, X. (2019). The Calculation of Roughness Uncertainty by Fitting B-Spline Filter Assessment Middle Lines. Mathematical Problems in Engineering, 2019(2), 1-10. https://doi.org/10.1155/2019/6913215
  • [34] Adamczak, S., Makiela, W., & Stępień, K. (2010). Investigating advantages and disadvantages of the analysis of a geometrical surface structure with the use of Fourier and wavelet transform. Metrology and Measurement Systems, 17(2), 233-244. https://doi.org/10.2478/v10178-010-0020-x
  • [35] Zieliński, T. (2004). Wavelet transform applications in instrumentation and measurement: tutorial & literature survey. Metrology and Measurement Systems, 11(1), 61-101.
  • [36] Lee S. H., Zahouani, H., Caterini, R., & Mathia, T. G. (1998). Morphological characterisation of engineered surfaces by wavelet transform. International Journal of Machine Tools and Manufacture, 38(5-6), 581-589. https://doi.org/10.1016/s0890-6955(97)00105-3
  • [37] Jiang, X. Q., Blunt, L., & Stout, K. J. (2001). Application of the lifting wavelet to rough surfaces. Precision Engineering, 25(2), 83-89. https://doi.org/10.1016/s0141-6359(00)00054-4
  • [38] Seewig, J. (2013). Areal filtering methods. Characterisation of Areal Surface Texture. Springer, Berlin, Heidelberg, 67-106. https://doi.org/10.1007/978-3-642-36458-7_4
  • [39] Sweldens, W. (1996). The Lifting Scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 3(2), 186-200. https://doi.org/10.1006/acha.1996.0015
  • [40] ISO 16610-29:2015. Geometrical Product Specifications (GPS) - Filtration - Part 29: Linear profile filters: Spline wavelets.
  • [41] Chen, X., Raja, J., & Simanapalli, S. (1995). Multi-scale analysis of engineering surfaces. International Journal of Machine Tools and Manufacture, 35(2), 231-238. https://doi.org/10.1016/0890-6955(94)p2377-r
  • [42] Liu, X., & Raja, J. (1996). Analyzing engineering surface texture using wavelet filter. In: Wavelet applications in signal and image processing IV. International Society for Optical Engineering, 2825, 942-949. https://doi.org/10.1117/12.255308
  • [43] Jiang, X. Q., Blunt, L., & Stout, K. J. (2000). Development of a Lifting Wavelet Representation for Surface Characterization. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456(2001), 2283-2313. https://doi.org/10.1098/rspa.2000.0613
  • [44] Wang, A. L., Yang, C. X., & Yuan, X. G. (2003). Evaluation of the wavelet transform method for machined surface topography I: methodology validation. Tribology International, 36(7), 517-526. https://doi.org/10.1016/s0301-679x(02)00237-2
  • [45] Jiang, X., Scott, P., & Whitehouse, D. (2008). Wavelets and their applications for surface metrology. CIRP Annals-Manufacturing Technology, 57(1), 555-558. https://doi.org/10.1016/j.cirp.2008.03.110
  • [46] Bakucz, P., & Krüger-Sehm, R. (2009). A new wavelet filtering for analysis of fractal engineering surfaces. Wear, 266(5-6), 539-542. https://doi.org/10.1016/j.wear.2008.04.078
  • [47] Miller, T., Łętocha, A., & Gajda, K. (2015). Influence of different filtration methods application on a filtered surface profile and roughness parameters. Key Engineering Materials, 637, 57-68. https://doi.org/10.4028/www.scientific.net/kem.637.57
  • [48] Seewig, J. (2005). Linear and robust Gaussian regression filters. Journal of Physics: conference series, 13(1), 254-257. https://doi.org/10.1088/1742-6596/13/1/059
  • [49] ISO 16610-31:2010. Geometrical Product Specification (GPS) - Filtration - Part 31: Robust profile filters: Gaussian regression filters.
  • [50] Li, H., Jiang, X., & Li, Z. (2004). Robust estimation in Gaussian filtering for engineering surface characterization. Precision Engineering, 28(2), 186-193. https://doi.org/10.1016/j.precisioneng.2003.10.004
  • [51] Dobrzanski, P., & Pawlus, P. (2010). Digital filtering of surface topography: Part I. Separation of one-process surface roughness and waviness by Gaussian convolution, Gaussian regression and spline filters. Precision Engineering, 34(3), 647-650. https://doi.org/10.1016/j.precisioneng.2009.12.001
  • [52] Dobrzanski, P., & Pawlus, P. (2005). Gaussian regression robust filtering on the surface topography measurement. Proceedings of the 10th International Conference Metrology and Properties of Engineering Surfaces: Saint-Etienne, France, Université de Saint-Etienne, 133-143.
  • [53] Dobrzanski, P., & Pawlus, P. (2010). Digital filtering of surface topography: Part II. Applications of robust and valley suppression filters. Precision Engineering, 34(3), 651-658. https://doi.org/j.precisioneng.2009.12.006
  • [54] Gurau, L., Mansfield-Williams, H., & Irle, M. (2014). Convergence of the robust Gaussian regression filter applied to sanded wood surfaces. Wood Science and Technology, 48(6), 1139-1154. https://doi.org/10.1007/s00226-014-0663-y
  • [55] ISO 16610-32:2009. Geometrical Product Specification (GPS) - Filtration - Part 32: Robust profile filters: Spline filters.
  • [56] Goto, T., Miyakura, J., Umeda, K., Kadowaki, S., & Yanagi, K. (2005). A Robust Spline Filter on the basis of L2-norm. Precision Engineering, 29(2), 157-161. https://doi.org/10.1016/j.precisioneng.2004.06.004
  • [57] Krystek, M. P. (2005). Spline filters for surface texture analysis. Key Engineering Materials, 295(1), 441-446. https://doi.org/10.4028/www.scientific.net/kem.295-296.441
  • [58] Zhang, H., Zhang, J., Hua, J., & Cheng, Y. (2013). A Robust Spline Filter Algorithm Based on M-Estimate Theory. Advanced Materials Research, 655, 909-912. https://doi.org/10.4028/www.scientific.net/amr.655-657.909
  • [59] Nakamura, M., Kikuchi, Y., Hotta, S., Fujiwara, Y., Konoike, T. (2018). Evaluation of the sensory roughness of some coated wood surfaces by image analysis. European journal of wood and wood products, 76(6), 1571-1580. https://doi.org/10.1007/s00107-018-1342-8
  • [60] Markov, B. N., & Shulepov, A. V. (2015). Robust filtering algorithms for roughness profiles. Measurement Techniques, 58(7), 730-735. https://doi.org/10.1007/s11018-015-0784-1
  • [61] Mathia, T.G., Pawlus, P., & Wieczorowski, M. (2011). Recent trends in surface metrology. Wear, 271(3-4), 494-508. https://doi.org/10.1016/j.wear.2010.06.001
  • [62] Krystek, M. P. (2010). ISO filters in precision engineering and production measurement. arXiv preprint arXiv: 1012. 0678.
  • [63] ISO 16610-41:2015. Geometrical Product Specification (GPS) - Filtration - Part 41: Morphological profile filters: Disk and horizontal line-segment filters.
  • [64] ISO 16610-49:2015. Geometrical Product Specification (GPS) - Filtration - Part 49: Morphological profile filters: Scale space techniques.
  • [65] Shunmugam, M. S., & Radhakrishnan, V. (1974). Two-and three-dimensional analyses of surfaces according to the E-system. Proceedings of the Institution of Mechanical Engineers, 188(1), 691-699. https://doi.org/10.1243/pime_proc_1974_188_082_02
  • [66] Srinivasan, V. (1998). Discrete morphological filters for metrology. Proceedings 6th ISMQC Symposium on Metrology for Quality Control in Production, 623-628.
  • [67] Kumar, J., & Shunmugam, M. S. (2006). A new approach for filtering of surface profiles using morphological operations. International Journal of Machine Tools and Manufacture, 46(3-4), 260-270. https://doi.org/10.1016/j.ijmachtools.2005.05.025
  • [68] Lou, S., Jiang, X., & Scott, P. J. (2011). Fast algorithm for morphological filters. Journal of Physics: conference series, 311(1), 012001. https://doi.org/10.1088/1742-6596/311/1/012001
  • [69] Lou, S., Jiang, X., & Scott, P. J. (2012). Algorithms for morphological profile filters and their comparison. Precision Engineering, 36(3), 414-423. https://doi.org/10.1016/j.precisioneng.2012.01.003
  • [70] Lou, S., Jiang, X., & Scott, P. J. (2013). Application of the morphological alpha shape method to the extraction of topographical features from engineering surfaces. Measurement, 46(2), 1002-1008. https://doi.org/10.1016/j.measurement.2012.09.015
  • [71] ISO 16610-61:2015. Geometrical Product Specifications (GPS) - Filtration - Part 61: Linear areal filters: Gaussian filters.
  • [72] Luo, N. L., Sullivan, P. J., & Stout, K. J. (1993). Gaussian filtering of three-dimensional engineering surface topography. Measurement Technology and Intelligent Instruments, International Society for Optics and Photonics, 2101, 527-538. https://doi.org/10.1117/12.156497
  • [73] Yuan, Y., Vorburger, T. V., & Song, J. F. (2001). A recursive algorithm for Gaussian filtering of three-dimensional engineering surface topography. Proceedings of the ISMQC 2001 Conference, National Institute of Standards Technology, Egypt, Cairo, 31-39.
  • [74] Xu, J., & Yuan, Y. (2005). A fast algorithm of Gaussian filtering for three-dimensional Surface topography. Icmit: Information Systems and Signal Processing, International Society for Optics and Photonics, 6401, 64011C. https://doi.org/10.1117/12.664330
  • [75] Gathimba, N., Kitane, Y., Yoshida, T., & Itoh, Y. (2019). Surface roughness characteristics of corroded steel pipe piles exposed to marine environment. Construction and Building Materials, 203, 267-281. https://doi.org/10.1016/j.conbuildmat.2019.01.092
  • [76] Solhjoo, S., Müser, M. H., Vakis, A. I. (2019). Nanocontacts and Gaussian Filters. Tribology Letters, 67(3), 94. https://doi.org/10.1007/s11249-019-1209-0
  • [77] Todhunter, L., Leach, R. K., & Blateyron, F. (2020). Mathematical approach to the validation of surface texture filtration software. Surface Topography Metrology and Properties, 8(4), 045017. https://doi.org/10.1088/2051-672x/abc0fb
  • [78] ISO 16610-71:2014. Geometrical Product Specifications (GPS) - Filtration - Part 71: Robust areal filters: Gaussian regression filters.
  • [79] Fujiwara, Y., Fujii, Y., Sawada, Y., & Okumura, S. (2004). Assessment of wood surface roughness: comparison of tactile roughness and three-dimensional parameters derived using a robust Gaussian regression filter. Journal of Wood Science, 50(1), 35-40. https://doi.org/10.1007/s10086-003-0529-7
  • [80] Zeng, W., Jiang, X., & Scott, P. J. (2010). Fast algorithm of the robust Gaussian regression filter for areal surface analysis. Measurement Science and Technology, 21(5), 055108. https://doi.org/10.1088/0957-0233/21/5/055108
  • [81] Podulka, P. (2019). Edge-area form removal of two-process surfaces with valley excluding method approach. MATEC web of conferences, EDP Sciences, 252(2), 05020. https://doi.org/matecconf/201925205020
  • [82] ISO 25178-2:2012. Geometrical Product Specification (GPS) - Surface Texture: Areal - Part 2: Terms, definitions and surface texture parameters.
  • [83] ISO 16610-85:2013. Geometrical Product Specification (GPS) - Filtration - Part 85: Morphological areal filters: Segmentation.
  • [84] Wang, J., Jiang, X., Gurdak, E., Scott, P., Leach, R., Tomlins, P., & Blunt, L. (2011). Numerical characterisation of biomedical titanium surface texture using novel feature parameters. Wear, 271(7-8), 1059-1065. https://doi.org/10.1016/j.wear.2011.05.018
  • [85] Senin, N., Blunt, L. A., Leach, R. K., & Pini, S. (2013). Morphologic segmentation algorithms for extracting individual surface features from areal surface topography maps. Surface Topography Metrology and Properties, 1(1), 015005. https://doi.org/10.1088/2051-672x/1/1/015005
  • [86] Goto. T., & Yanagi, K. (2009). An optimal discrete operator for the two-dimensional spline filter. Measurement Science and Technology, 20(12), 125105. https://doi.org/10.1088/0957-0233/20/12/125105
  • [87] Janecki, D. (2013). A two-dimensional isotropic spline filter. Precision Engineering, 37(4), 948-965. https://doi.org/10.1016/j.precisioneng.2013.05.005
  • [88] Zhang, H., Tong, M., & Chu, W. (2015). An Areal Isotropic Spline Filter for Surface Metrology. Journal of Research of the National Institute of Standards and Technology, 120, 64-73. https://doi.org/10.6028/jres.120.006
  • [89] Tong, M., Zhang, H., Ott, D., & Song, J. (2015). Applications of the spline filter for areal filtration. Measurement Science and Technology, 26(12), 127002. https://doi.org/10.1088/0957-0233/26/12/127002
  • [90] Josso, B., Burton, D. R., & Lalor, M. J. (2001). Wavelet strategy for surface roughness analysis and characterization. Computer Methods in Applied Mechanics and Engineering, 191(8-10), 829-842. https://doi.org/10.1016/s0045-7825(01)00292-4
  • [91] Xiao, S. J., Jiang, X. Q., Blunt, L., Scott, P. J. (2001). Comparison study of the biorthogonal spline wavelet filtering for areal rough surfaces. International Journal of Machine Tools and Manufacture, 41(13-14), 2103-2111. https://doi.org/10.1016/s0890-6955(01)00077-3
  • [92] Jiang, X. Q., Blunt, L., Stout, K. J. (2001). Lifting wavelet for three-dimensional surface analysis. International Journal of Machine Tools and Manufacture, 41(13-14), 2163-2169. https://doi.org/10.1016/s0890-6955(01)00083-9
  • [93] Zeng, W., Jiang, X., Scott, P. (2005). Metrological characteristics of dual-tree complex wavelet transform for surface analysis. Measurement Science and Technology, 16(7), 1410-1417. https://doi.org/10.1088/0957-0233/16/7/002
  • [94] Zawada-Tomkiewicz, A. (2010). Estimation of Surface Roughness Parameter Based on Machined Surface Image. Metrology and Measurement Systems, 17(3), 493-503. https://doi.org/10.2478/v10178-010-0041-5
  • [95] Huang, M. F., Cheng, X., Qian, G., Huang, J. T., Zhang, J., & Jing, H. (2010). Realization of Surface Topography Separation by B Spline Wavelet. Advanced Materials Research, 154, 34-37. https://doi.org/10.4028/www.scientific.net/amr.154-155.34
  • [96] Ren, Z. Y., Gao, C. H., Han, G. Q., Ding, S., & Lin J. X. (2014). DT-CWT robust filtering algorithm for the extraction of reference and waviness from 3-D nano scalar surfaces. Measurement Science Review, 14(2), 87-93. https://doi.org/10.2478/msr-2014-0012
  • [97] Jana, B. R., & Seventline, J. B. (2015). Identification of surface roughness parameters using wavelet transforms. International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO). https://doi.org/10.1109/eesco.2015.7253777
  • [98] Wang, X., Shi, T. L., Liao, G. L., Zhang, Y. C., Hong, Y., & Chen, K. P. (2017). Using Wavelet Packet Transform for Surface Roughness Evaluation and Texture Extraction. Sensors, 17(4), 933. https://doi.org/10.3390/s17040933
  • [99] Pawlus, P., Reizer, R., & Wieczorowski, M. (2017). Problem of non-measured points in surface texture measurements. Metrology and Measurement Systems, 24(3), 525-536. https://doi.org/10.1515/mms-2017-0046
  • [100] Duan, C. Z., Sun, W., Feng, Z., & Zhang, F. (2018). Defects formation mechanism and evaluation of surface roughness in machining Al/SiCp composites. Journal of Advanced Mechanical Design Systems and Manufacturing, 12(1), JAMDSM0005-JAMDSM0005. https://doi.org/10.1299/jamdsm.2018jamdsm0005
  • [101] García-Plaza, E., Núńez-López, P. J. (2018). Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations. Mechanical Systems and Signal Processing, 98, 902-919. https://doi.org/10.1016/j.ymssp.2017.05.028
  • [102] Wang, Y. C., Liu, Y., Zhang, G. L., Guo, F., Liu, X. F., & Wang, Y. M. (2018). Extraction of features for surface topography by morphological component analysis. Tribology International, 123, 191-199. https://doi.org/10.1016/j.triboint.2018.03.001
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a4eb9e0-fe0f-407e-8663-681f870b84c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.