PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chaotic path planning for grid coverage using a modified logistic-may map

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple and efficient method for creating a motion trajectory is presented with an aim to achieve sufficient coverage of a given terrain. A chaotic map has been used in order that the motion trajectory should be unpredictable. The chaotic path generator which has been created, is used for implementing a robot’s movement in four and eight directions. The path generator is tested in various scenarios and the results are discussed. After thorough examination, the proposed method shows that the motion in eight directions gives better and very satisfactory results.
Słowa kluczowe
Twórcy
  • – Laboratory of Nonlinear Systems – Circuits & Complexity, Physics Department, Aristotle University of Thessaloniki, Greece
  • – Laboratory of Nonlinear Systems – Circuits & Complexity, Physics Department, Aristotle University of Thessaloniki, Greece
  • – Laboratory of Nonlinear Systems – Circuits & Complexity, Physics Department, Aristotle University of Thessaloniki, Greece
  • Department of Electronics, Computers, Telecommunications and Control. Faculty of Physics, National and Kapodistrian University of Athens, Athens, Greece
  • Faculty of Electronic Sciences, Benemérita Universidad Autónoma de Puebla, Mexico
  • Laboratory of Nonlinear Systems – Circuits & Complexity, Physics Department, Aristotle University of Thessaloniki, Greece
Bibliografia
  • [1] H. Abdellilah, B. Mohamed, M. Abdellah, M. Youcef and A. M. Réda, “Depth advanced control of an autonomous underwater robot”, International Journal of Modelling, Identification and Control, vol. 26, no. 4, 2016, 336–344, DOI: 10.1504/IJMIC.2016.081134.
  • [2] R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza, Introduction to autonomous mobile robots, MIT Press, 2011.
  • [3] K. M. Ali and M. Khan, “Application Based Construction and Optimization of Substitution Boxes Over 2D Mixed Chaotic Maps”, International Journal of Theoretical Physics, vol. 58, no. 9, 2019, 3091–3117, DOI: 10.1007/s10773-019-04188-3.
  • [4] M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw and S. Homans, “Modular reconfigurable robots in space applications”, Autonomous Robots, vol. 14, no. 2-3, 2003, 225–237, DOI: 10.1023/A:1022287820808.
  • [5] L. S. Martins-Filho and E. E. N. Macau, “Trajectory Planning for Surveillance Missions of Mobile Robots”. In: S. C. Mukhopadhyay and G. S. Gupta (eds.), Autonomous Robots and Agents, vol. 76, 2007, 109–117, Springer, DOI: 10.1007/978-3-540-73424-6_13.
  • [6] J. Palacin, J. A. Salse, I. Valganon and X. Clua, “Building a Mobile Robot for a Floor-Cleaning Operation in Domestic Environments”, IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 5, 2004, 1418–1424, DOI: 10.1109/TIM.2004.834093.
  • [7] S. Tadokoro (ed.), Rescue Robotics, Springer London, 2009, DOI: 10.1007/978-1-84882-474-4.
  • [8] M. J. M. Tavera, M. S. Dutra and O. Lengerke, “Implementation of Chaotic Behavior on a Fire Fighting Robot”. In: Mechatronics Series 1 Volume 1: Intelligent Transportation Vehicles, 2011, 170–182.
  • [9] B. Ośmiałowski, “On path planning for mobile robots: Introducing the mereological potential field method in the framework of mereological spatial reasoning”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 3, no. 2, 2009, 24–33.
  • [10] S. Kundu, M. Mishra and D. R. Parhi, “Autonomous navigation of underwater mobile robot based on harmony search optimization”. In: 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2014, 1–6, DOI: 10.1109/PEDES.2014.7042121.
  • [11] Q.-J. Huang and K. Nonami, “Humanitarian mine mdetecting six-legged walking robot and hybrid neuro walking control with position/force control”, Mechatronics, vol. 13, no. 8–9, 2003, 773–790, DOI: 10.1016/S0957-4158(03)00002-3.
  • [12] E. Krotkov and J. Blitch, “The Defense Advanced Research Projects Agency (DARPA) Tactical Mobile Robotics Program”, The International Journal of Robotics Research, vol. 18, no. 7, 1999, 769–776, DOI: 10.1177/02783649922066457.
  • [13] R. Murphy, J. Kravitz, S. Stover and R. Shoureshi, “Mobile robots in mine rescue and recovery”, IEEE Robotics & Automation Magazine, vol. 16, no. 2, 2009, 91–103, DOI: 10.1109/MRA.2009.932521.
  • [14] D.-I. Curiac, O. Banias, C. Volosencu and C.-D. Curiac, “Novel Bioinspired Approach Based on Chaotic Dynamics for Robot Patrolling Missions with Adversaries”, Entropy, vol. 20, no. 5, 2018, DOI: 10.3390/e20050378.
  • [15] C. Pippin, H. Christensen and L. Weiss, “Performance based task assignment in multi-robot patrolling”. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing - SAC '13, 2013, 70–76, DOI: 10.1145/2480362.2480378.
  • [16] D. Portugal and R. Rocha, “MSP algorithm: multi-robot patrolling based on territory allocation using balanced graph partitioning”. In: Proceedings of the 2010 ACM Symposium on Applied Computing - SAC '10, 2010, 1271–1276, DOI: 10.1145/1774088.1774360.
  • [17] D. B. S. Portugal, “RoboCops: A Study of Coordination Algorithms for Autonomous Mobile Robots in Patrolling Missions,” M.Sc. Thesis, University of Coimbra, Portugal, 2009.
  • [18] H. Choset, “Coverage for robotics – a survey of recent results”, Annals of Mathematics and Artificial Intelligence, vol. 31, no. 1–4, 2001, 113–126, DOI: 10.1023/A:1016639210559.
  • [19] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics”, Robotics and Autonomous Systems, vol. 61, no. 12, 2013, 1258–1276, DOI: 10.1016/j.robot.2013.09.004.
  • [20] Y. Nakamura and A. Sekiguchi, “The chaotic mobile robot”, IEEE Transactions on Robotics and Automation, vol. 17, no. 6, 2001, 898–904, DOI: 10.1109/70.976022.
  • [21] H. He, Y. Wu, B. Zhang, D. Zhang, Y. Tian, K. Wang, H. Meng and M. Hou, “Discrete Chaotic Synchronization and Secure Communication Design”. In: 2009 Fifth International Conference on Natural Computation, vol. 5, 2009, 473–476, DOI: 10.1109/ICNC.2009.116.
  • [22] K. K. Kabi, C. Pradhan, B. J. Saha and A. K. Bisoi, “Comparative study of image encryption using 2D chaotic map”. In: 2014 International Conference on Information Systems and Computer Networks (ISCON), 2014, 105–108, DOI: 10.1109/ICISCON.2014.6965227.
  • [23] R. N. R. Parida, S. Singh and C. Pradhan, “Analysis of Color Image Encryption Using Multidimensional Bogdanov Map”. In: N. Dey, A. S. Ashour, H. Kalia, R. T. Goswami and H. Das (eds.), Histopathological Image Analysis in Medical Decision Making, IGI Global, 2019, 202–225, DOI: 10.4018/978-1-5225-6316-7.
  • [24] D. Rathore and A. Suryavanshi, “A Proficient Image Encryption using Chaotic Map Approach”, International Journal of Computer Applications, vol. 134, no. 10, 2016, 20–24, DOI: 10.5120/ijca2016908122.
  • [25] D.-I. Curiac and C. Volosencu, “A 2D chaotic path planning for mobile robots accomplishing boundary surveillance missions in adversarial conditions”, Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 10, 2014, 3617–3627, DOI: 10.1016/j.cnsns.2014.03.020.
  • [26] A. A. Fahmy, “Chaotic Mobile Robot Workspace Coverage Enhancement”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 6, no. 1, 2012, 33–38.
  • [27] A. A. Fahmy, “Implementation of the chaotic mobile robot for the complex missions”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 6, no. 2, 2012, 8–12.
  • [28] S. Nasr, H. Mekki and K. Bouallegue, “A multi-scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller”, Chaos, Solitons & Fractals, vol. 118, 2019, 366–375, DOI: 10.1016/j.chaos.2018.12.002.
  • [29] E. K. Petavratzis, C. K. Volos, I. N. Stouboulos, H. E. Nistazakis, K. G. Kyritsi and K. P. Valavanis, “Coverage Performance of a Chaotic Mobile Robot Using an Inverse Pheromone Model”. In: 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), 2019, 1–4,DOI: 10.1109/MOCAST.2019.8741542.
  • [30] C. K. Volos, I. M. Kyprianidis and I. N. Stouboulos, “A chaotic path planning generator for autonomous mobile robots”, Robotics and Autonomous Systems, vol. 60, no. 4, 2012, 651–656, DOI: 10.1016/j.robot.2012.01.001.
  • [31] C. K. Volos, I. M. Kyprianidis and I. N. Stouboulos, “Experimental investigation on coverage performance of a chaotic autonomous mobile robot”, Robotics and Autonomous Systems, vol. 61, no. 12, 2013, 1314–1322,DOI: 10.1016/j.robot.2013.08.004.
  • [32] C. K. Volos, “Motion direction control of a robot based on chaotic synchronization phenomena”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 7, no. 2, 2013, 64–69.
  • [33] L. Moysis, E. Petavratzis, C. Volos, H. Nistazakis and I. Stouboulos, “A chaotic path planning generator based on logistic map and modulo tactics”, Robotics and Autonomous Systems, vol. 124, 2020, DOI: 10.1016/j.robot.2019.103377.
  • [34] K. M. Ali and M. Khan, “Application Based Construction and Optimization of Substitution Boxes Over 2D Mixed Chaotic Maps”, International Journal of Theoretical Physics, vol. 58, no. 9, 2019, 3091–3117, DOI: 10.1007/s10773-019-04188-3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2826328b-cadf-4924-9ea3-4a1d6097a5ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.