Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present research, commercial Al–3%Mg aluminium alloy was subjected to the ECAP processing using a modified die with a helical 30° exit channel. The changes in microstructure were characterized by light microscopy, electron backscatter diffraction (EBSD) and TEM. Mechanical properties were compared based on hardness measurement. It is also shown that such modification of ECAP die enhances grain refinement due to the vortex-like flow of metal during subsequent deformations. The results of the metallographic study showed that microstructure is refined due to the interactions and intersections of the deformation bands. The mechanical properties examinations display a significant improvement after the first ECAP pass and less significant increase with subsequent passes.
Czasopismo
Rocznik
Tom
Strony
287--296
Opis fizyczny
Bibliogr. 36 poz., fot., rys., wykr.
Twórcy
autor
- Division of Material Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- Division of Material Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- Division of Material Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
autor
- VŠB-Technical University of Ostrava, 17. listopadu 15, Ostrava 708 33, Czechia
Bibliografia
- [1] G.E. Totten, D.S. MacKenzie, Handbook of Aluminum: Physical Metallurgy and Processes, Marcel Dekker, New York, USA, 2003.
- [2] I.J. Polmear, Light Alloys – Metallurgy of the Light Metals, 3rd ed., Arnold (a Division Hodder Headline PLC), London, 1995.
- [3] Z. Ch. Duan, N.Q. Chinh, Ch. Xu, T.G. Langdon, Developing processing routes for the equal-channel angular pressing of age-hardenable aluminum alloys, Metall. Mater. Trans. A 41 (2010) 802–809.
- [4] M.A. Muñoz-Morris, C. Garcia Oca, G. Gonzalez-Doncel, D.G. Morris, Mater. Sci. Eng. A 375 (2004) 853–856.
- [5] A. Vinogradov, A. Washikita, K. Kitagawa, V.I. Kopylov, Fatigue life of fine-grain Al–Mg–Sc alloys produced by equal-channel angular pressing, Mater. Sci. Eng. A 349 (1–2) (2003) 318–326.
- [6] T. Tański, P. Snopiński, W. Pakieła, W. Borek, K. Prusik, S. Rusz, Structure and properties of AlMg alloy after combination of ECAP and post-ECAP ageing, Arch. Civ. Mech. Eng. 16 (3) (2016) 325–334.
- [7] D. Singh, P.N. Rao, R. Jayaganthan, Effect of deformation temperature on mechanical properties of ultrafine grained Al–Mg alloys processed by rolling, Mater. Des. 50 (2013) 646–655.
- [8] M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, H.J. Roven, Microstructure evolution and mechanical behavior of a binary Al–7Mg alloy processed by equal-channel angular pressing, Acta Mater. 84 (2015) 42–54.
- [9] T. Tański, P. Snopiński, K. Prusik, M. Sroka, The effects of room temperature ECAP and subsequent aging on the structure and properties of the Al–3%Mg aluminium alloy, Mater. Charact. 133 (2017) 185–195.
- [10] P. Snopiński, T. Tański, K. Labisz, S. Rusz, P. Jonsta, M. Król, Wrought aluminium–magnesium alloys subjected to SPD processing, Int. J. Mater. Res. 107 (2016) 637–645.
- [11] O. Sitdikov, E. Avtokratova, T. Sakai, K. Tsuzaki, Ultrafinegrain structure formation in an Al–Mg–Sc alloy during warm ECAP, Metall. Mater. Trans. A 44 (2013) 1087–1100.
- [12] T.G. Langdon, The principles of grain refinement in equalchannel angular pressing, Mater. Sci. Eng. A 462 (1–2) (2007) 3–11.
- [13] L.S. Tóth, R. Lapovok, A. Hasani, Ch. Gu, Non-equal channel angular pressing of aluminum alloy, Scr. Mater. 61 (2009) 1121–1124.
- [14] R. Kocich, L. Kunčická, P. Král, A. Macháčková, Sub-structure and mechanical properties of twist channel angular pressed aluminium, Mater. Charact. 119 (2016) 75–83.
- [15] F. Fereshteh-Saniee, M. Asgari, M. Barati, S.M. Pezeshki, Effects of die geometry on non-equal channel lateral extrusion (NECLE) of AZ80 magnesium alloy, Trans. Nonferr. Metals Soc. China 24 (10) (2014) 3274–3284. [(Fig.16)TD$FIG] Fig. 16 – The relationship between ECAP strain and hardness in aluminium alloys containing 2.5–3 wt.% Mg.
- [16] W. Chrominski, L. Olejnik, A. Rosochowski, M. Lewandowska, Grain refinement in technically pure aluminium plates Rusing incremental ECAP processing, Mater. Sci. Eng. A 636 (2015) 172–180.
- [17] B. Mani, M. Jahedi, M.H. Paydar, B. Mani, M. Jahedi, M.H. Paydar, Consolidation of commercial pure aluminum powder by torsional-equal channel angular pressing (T-ECAP) at room temperature, Powder Technol. 219 (2012) 1–8.
- [18] B. Talebanpour, R. Ebrahimi, K. Janghorban, Microstructural and mechanical properties of commercially pure aluminium subjected to dual equal channel lateral extrusion, Mater. Sci. Eng. A 527 (2009) 141–145.
- [19] S. Rusz, K. Malanik, Refining of structure of the alloy AlMn1Cu with use of multiple severe plastic deformation, J. Achiev. Mater. Manuf. Eng. 27 (2008) 167–170.
- [20] T. Tański, P. Snopiński, O. Hilser, Microstructure and mechanical properties of two binary Al–Mg alloys deformed using equal channel angular pressing, Materialwiss. Werkstofftech. 48 (2017) 439–446.
- [21] T. Tański, P. Snopiński, W. Borek, Strength and structure of AlMg3 alloy after ECAP and post-ECAP processing, Mater. Manuf. Process. 32 (2017) 1368–1374. , http://dx.doi.org/10.1080/10426914.2016.1257131.
- [22] Y. Beygelzimer, A. Reshetov, S. Synkov, O. Prokof'eva, R. Kulagin, Kinematics of metal flow during twist extrusion investigated with a new experimental method, J. Mater. Process. Technol. 209 (2009) 3650–3656.
- [23] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006) 81–981.
- [24] M. Cabibbo, E. Evangelista, C. Scalabroni, EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equal-channel angularpressing, Micron 36 (2005) 401–414.
- [25] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A 540 (2012) 1–12.
- [26] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000) 103–189.
- [27] M. Liu, H.J. Roven, Y. Yu, J.C. Werenskiold, Deformation structures in 6082 aluminium alloy after severe plastik deformation by equal-channel angular pressing, Mater. Sci. Eng. A 483–484 (2008) 59–63.
- [28] T. Khelfa, M.A. Rekik, M. Khitouni, J.M. Cabrera-Marrero, Structure and microstructure evolution of Al–Mg–Si alloy processed by equal-channel angular pressing, Int. J. Adv. Manuf. Technol. 92 (2017) 1731–1740.
- [29] M.A. Muñoz-Morris, C. Garcia Oca, D.G. Morris, Mechanical behaviour of dilute Al–Mg alloy processed by equal Chanel angular pressing, Scr. Mater. 48 (3) (2003) 213–218.
- [30] T.L. Tsai, P.L. Sun, P.W. Kao, C.P. Chang, Microstructure and tensile properties of a commercial 5052 aluminum alloy processed by equal channel angular extrusion, Mater. Sci. Eng. A 342 (1–2) (2003) 144–151.
- [31] M. Dinkel, F. Pyczak, J. May, H.W. Hoppel, M. Goken, XRD profile analysis characterization of ultrafine grained Al–Mg alloys, J. Mater. Sci. 43 (2008) 7481–7487.
- [32] M. Howeyze, H. Arabi, A.R. Eivani, H.R. Jafarian, Strengthening of AA5052 aluminum alloy by equal channel angular pressing followed by softening at room temperature, Mater. Sci. Eng. A 720 (2018) 160–168.
- [33] A. Chatterjee, G. Sharma, A. Sarkar, J.B. Singh, J.K. Chakravartty, A study on cryogenic temperature ECAP on the microstructure and mechanical properties of Al–Mg alloy, Mater. Sci. Eng. A 556 (2012) 653–657.
- [34] E.A. El-Danaf, Mechanical properties, microstructure and texture of single pass equal channel angular pressed 1050, 5083, 6082 and 7010 aluminum alloys with different dies, Mater. Des. 32 (7) (2011) 3838–3853.
- [35] D.R. Fang, Q.Q. Duan, N.Q. Zhao, J.J. Li, S.D. Wu, Z.F. Zhang, Tensile properties and fracture mechanism of Al–Mg alloy subjected to equal channel angular pressing, Mater. Sci. Eng. A 459 (1–2) (2007) 137–144.
- [36] Y.C. Chen, Y.Y. Huang, C.P. Chang, P.W. Kao, The effect of extrusion temperature on the development of deformation microstructures in 5052 aluminium alloy processed by equalchannel angular extrusion, Acta Mater. 51 (7) (2003) 2005–2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9bd2604-ff1f-4902-8ef7-b629b5ebf62b