Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Synchronous Reluctance Machine (SynRM) is an electrical machine in which the useful electromagnetic torque is produced due to rotor saliency. Its high powerand torque-to-mass ratio and very good efficiency make it a cheap and simple alternative for permanent magnet or induction motors, e.g. in electromobility applications. However, because of magnetic nonlinearities, the rotational speed and torque control of a SynRM is a nontrivial task. In the paper, a control algorithm based on a Hamiltonian mathematical model is presented. The model is formulated using measurement results, obtained by the drive controller. An algorithm is tested in the drive system consisting of a SynRM with the classical rotor and a fast prototyping card. The drive dynamic response in transient states is very good, but the proposed algorithm does not ensure the best efficiency after steady state angular velocity is achieved.
Czasopismo
Rocznik
Tom
Strony
757--769
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
autor
- Department of Mechatronics, Faculty of Electrical Engineering Silesian University of Technology Akademicka 10A, 44-100 Gliwice, Poland
autor
- Department of Mechatronics, Faculty of Electrical Engineering Silesian University of Technology Akademicka 10A, 44-100 Gliwice, Poland
autor
- Department of Mechatronics, Faculty of Electrical Engineering Silesian University of Technology Akademicka 10A, 44-100 Gliwice, Poland
Bibliografia
- [1] Boglietti A., Pastorelli M., Induction and synchronous reluctance motors comparison, IECON Proceedings of Industrial Electronic Conference, pp. 2041–2044 (2008).
- [2] Kärkkäinen H., Aarniovuori L., Niemelä M., Pyrhönen J., Kolehmainen J., Technology comparison of induction motor and synchronous reluctance motor, Proceedings of IECON 2017 – 43rd Annual Conference IEEE Industrial Electronics Society, no. 640, pp. 2207–2212 (2017).
- [3] Rettinger F., Huth G., Variable-speed PM synchronous motors with ferrite excitation, Electrical Engineering, vol. 99, no. 2, pp. 639–648 (2017).
- [4] Taghavi S., Pillay P., A core analysis of the synchronous reluctance motor for automotive applications, Proceedings of 2014 International Conference on Electrical Machines (ICEM) 2014, pp. 961–967 (2014).
- [5] De Gennaro M. et al., Designing, prototyping and testing of a ferrite permanent magnet assisted synchronous reluctance machine for hybrid and electric vehicles applications, Sustainable Energy Technologies and Assessments, vol. 31, pp. 86–101 (2019).
- [6] Widmer J. D., Martin R., Kimiabeigi M., Electric vehicle traction motors without rare earth magnets, Sustainable Materials Technologies (2015).
- [7] Kerdsup B., Fuengwarodsakul N.H., Performance and cost comparison of reluctance motors used for electric bicycles, Electrical Engineering, vol. 99, no. 2, pp. 475–486 (2017).
- [8] Kostko J. K., Polyphase reaction synchronous motors, Journal of the American Institute of Electrical Engineers, vol. 42, no. 11, pp. 1162–1168 (1923).
- [9] Boldea I. G., Reluctance Synchronous Machines and Drives, Oxford: Oxford University Press (1996).
- [10] Jurca F. N., Inte R., Martis C., Optimal rotor design of novel outer rotor reluctance synchronous machine, Electrical Engineering, pp. 1–10 (2019).
- [11] Park J. M., Il Kim S., Hong J. P., Lee J.H., Rotor Design on Troque Ripple Reduction for a Synchronous Reluctance Motor With Concentrated Winding Using Response Surface Methodology, vol. 42, no. 10, pp. 3479–3481 (2006).
- [12] Jurca F. N., Ruba M., Martis C., Design and control of synchronous reluctances motors for electric traction vehicle, 2016 International Symposium on Power Electronics and Electric Drives, Automation Motion, SPEEDAM 2016, pp. 1144–1148 (2016).
- [13] Richter J., Gemasmer T., Doppelbauer M., Predictive current control of saturated cross-coupled permanent magnet synchronous machines, 2014 International Symposium on Power Electronics Electrical Drives, Automation and Motion, SPEEDAM 2014, pp. 830–835 (2014).
- [14] Park R. H., Two-reaction theory of synchronous machines generalized method of analysis-part I, Transactions of the American Institute of Electrical Engineers, vol. 48, no. 3, pp. 716–727 (1929).
- [15] Chu C. T., Chiang H. K., Chung K. C., Lin T. C., Self-tuning single input fuzzy controller for a synchronous reluctance motor, 2014 International Symposium Next-Generation Electronics ISNE 2014, vol. 4, no. 3, pp. 4–7 (2014).
- [16] Choi J. S., Park K. T., Chung D. H., Ko J. S., Park B. S., Efficiency optimization control of SynRM drive by LM-FNN controller, 7th Internatonal Conference on Power Electronics ICPE’07, pp. 373–377 (2008).
- [17] Matsuo T., Lipo T. A., Field oriented control of synchronous reluctance machine, Proceedings of IEEE Power Electronics Specialist Conference – PESC ’93, pp. 425–431 (1993).
- [18] Morales-Caporal R., Pacas M., A predictive torque control for the synchronous reluctance machine taking into account the magnetic cross saturation, IEEE Transations on Industrial Electronics, vol. 54, no. 2, pp. 1161–1167 (2007) .
- [19] Wróbel K. T., Szabat K., Serkies P., Long-horizon model predictive control of induction motor drive, Archives of Electrical Engineering, vol. 68, no. 3, pp. 579–593 (2019).
- [20] Hanamoto T., Ghaderi A., Fukuzawa T., Tsuji T., Sensorless control of synchronous reluctance motor using modified flux linkage observer with an estimation error correct function, in Recent Developments of Electrical Drives, Springer, pp. 155–164 (2006).
- [21] Bugsch M., Piepenbreier B., HF Test Current-Ripple-Control-Based Sensorless Method for SynRMs in the Low- and Zero-Speed Range Leading to an Adaptive Square-Wave-Shaped Voltage Injection, 2018 IEEE 9th International Symposium on Sensorless Control Electrical Drives, SLED 2018, pp. 24–29 (2018).
- [22] Burlikowski W., Hamiltonian model of electromechanical actuator in natural reference frame. Parts 1 & 2, Archives of Electrical Engineering, vol. 60, no. 3, pp. 317–348 (2011).
- [23] Burlikowski W., Kielan P., Kowalik Z., Measurement based determination of the current-flux characteristic of a synchronous reluctance machine using a standard 3-phase inverter and a digital signal processor, in AIP Conference Proceedings, vol. 2029, iss. 1 (2018), DOI: 10.1063/1.5066471.
- [24] Vas P., Sensorless Vector and Direct Torque Control, (Monographs in Electrical Electronic Engineering, Oxford University Press, USA, p. 768 (1998).
- [25] Burlikowski W., Kohlbrenner L., Kowalik Z., Hamiltonian model based control algorithm for electromechanical actuator, in 2017 International Symposium on Electrical Machines, SME 2017 (2017).
- [26] Vick J. W., Homology Theory: An Introduction to Algebraic Topology, New York: Springer (1994).
- [27] Kowalik Z., Uncertainty of the magnetic flux linkage measurements performed by modified current decay test, Archives of Electrical Engineering, vol. 66, no. 3 (2017).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ee6b207d-d0e7-4f5e-8d60-d394cfe735c4