Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Various types of events and emergency situations have a significant impact on the safety of people and the environment. This especially refers to the incidents involving the emission of pollutants, such as ammonia, into the atmosphere. The article presents the concept of combining unmanned aerial vehicles with contamination plume modelling. Such a solution allows for mapping negative effects of ammonia release caused by the damage to a tank (with set parameters) during its transport as well as by the point leakage (such as unsealing in the installation). Simulation based on the ALOHA model makes it possible to indicate the direction of pollution spread and constitutes the basis for taking action. And, the use of a drone allows to control contamination in real time and verify the probability of a threat occurring in a given area.
Rocznik
Tom
Strony
art. no. e65
Opis fizyczny
Bibliogr. 73 poz., tab., rys.
Twórcy
autor
- Scientific and Research Centre for Fire Protection, National Research Institute, Nadwiślańska 213, 05-420 Józefów, Poland
autor
- Scientific and Research Centre for Fire Protection, National Research Institute, Nadwiślańska 213, 05-420 Józefów, Poland
autor
- Fire University of Warsaw, Słowackiego 52/54, 01-629 Warsaw, Poland
autor
- Fire University of Warsaw, Słowackiego 52/54, 01-629 Warsaw, Poland
autor
- Scientific and Research Centre for Fire Protection, National Research Institute, Nadwiślańska 213, 05-420 Józefów, Poland
autor
- Scientific and Research Centre for Fire Protection, National Research Institute, Nadwiślańska 213, 05-420 Józefów, Poland
autor
- Scientific and Research Centre for Fire Protection, National Research Institute, Nadwiślańska 213, 05-420 Józefów, Poland
Bibliografia
- 1. Abbaslou H., Karimi A., 2019. Modeling of ammonia emission in the petrochemical industry. Jundishapur J. Health Sci., 11, e94101. DOI: 10.5812/jjhs.94101.
- 2. AIRBEAM project, 2012–2015. AIRBorne information for emergency situation awareness and monitoring. Seventh framework programme of the European Community for research and technological development and demonstration activities (2007–2013). Available at: https://cordis.europa.eu/project/id/261769.
- 3. Al Fayez F., Hammoudeh M., Adebisi B., Abdul Sattar K.N., 2019. Assessing the effectiveness of flying ad hoc networks for international border surveillance. Int. J. Distrib. Sens. Netw., 15. DOI: 10.1177/1550147719860406.
- 4. Argasiński J.K., Lipp N., Dużmańska-Misiarczyk N., Lesicki Ł., Strojny P., 2019. The use of VR simulators for training the UAV operators and support crew, In: Feltynowski M. (Ed.), Wykorzystanie bezzałogowych platform powietrznych w operacjach na rzecz bezpieczeństwa publicznego. Wydawnictwo CNBOP-PIB, Józefów, 139–151. DOI: 10.17381/2019.1.
- 5. Bai Z., Dong Y., Wang Z., Zhu T., 2006. Emission of ammonia from indoor concrete wall and assessment of human exposure. Environ. Int., 32, 303–311. DOI: 10.1016/j.envint.2005.06.002.
- 6. Batstone D.J., Puyol D., Flores-Alsina X., Rodríguez J., 2015. Mathematical modelling of anaerobic digestion processes: applications and future needs. Rev. Environ. Sci. Bio/Technol., 14, 595–613. DOI: 10.1007/s11157-015-9376-4.
- 7. Battye W., Aneja V.P., Roelle P.A., 2003. Evaluation and improvement of ammonia emissions inventories. Atmos. Environ., 37, 3873–3883. DOI: 10.1016/S1352-2310(03)00343-1.
- 8. Bein D., Bein W., Karki A., Madan B.B., 2015. Optimizing border patrol operations using unmanned aerial vehicles. 12th International Conference on Information Technology – New Generations, 13–15.04.2015. Las Vegas, NV, USA., 479–484. DOI: 10.1109/itng.2015.83.
- 9. Bessagnet B., Menut L., Lapere R., Couvidat F., Jaffrezo J.-L., Mailler S., Favez O., Pennel R., Siour G., 2020. High resolution chemistry transport modeling with the on-line CHIMERE-WRF model over the French Alps—Analysis of a feedback of Surface particulate matter concentrations on mountain meteorology. Atmosphere, 11, 565. DOI: 10.3390/atmos11060565.
- 10. Bhattacharya R., Kumar G., 2015. Consequence analysis for simulation of hazardous chemicals release using ALOHA software. Int. J. ChemTech Res., 8, 2038–2046.
- 11. Bittman S., Jones K., Vingarzan R., Hunta D.E., Sheppard S.C., Tait J., So R., Zhao J., 2015. Weekly agricultural emissions and ambient concentrations of ammonia: validation of an emission inventory. Atmos. Environ., 113, 108–117. DOI: 10.1016/j.atmosenv.2015.04.038.
- 12. Burgués J., Marco S., 2020. Environmental chemical sensing using small drones: a review. Sci. Total Environ., 748, 141172. DOI: 10.1016/j.scitotenv.2020.141172.
- 13. CAMELOT project, 2017–2021. C2 advanced multi-domain environment and live observation technologies. Horizon 2020 – the Framework Programme for Research and Innovation (2014–2020). Available at: https://cordis.europa.eu/project/id/740736.
- 14. CAMEO R©Software Suite. ALOHA R©Example Scenarios. 2016. National Oceanic and Atmospheric Administration, U.S. Environmental Protection Agency. Available at: https://response.restoration.noaa.gov/sites/default/files/ALOHA_Examples.pdf.
- 15. COMPASS2020 project, 2019–2021. Coordination of maritime assets for persistent and systematic surveillance. Horizon 2020 –the Framework Programme for Research and Innovation (2014–2020). https://cordis.europa.eu/project/id/833650 (accessed on 17 February 2023). EPA, 2024. Acute exposure guideline levels for airborne chemicals. Available at: https://www.epa.gov/aegl.
- 16. Everts S., Davenport M., 2016. Drones detect threats such as chemical weapons, volcanic eruptions. Chemical Engineering News., 94(9), 36–37. Available at: https://cen.acs.org/articles/94/i9/Drones-detect-threats-chemical-weapons.html.
- 17. Feltynowski M., 2019. Wykorzystanie bezzałogowych platform powietrznych w operacjach na rzecz bezpieczeństwa publicznego. Wydawnictwo CNBOP-PIB, Józefów, 24. DOI: 10.17381/2019.1.
- 18. Ferlin M., Kurela M., Monge O., Castgnet C., 2019. Smart operations in ATEX RLV environment. 8th European Conference For Aeronautics And Space Sciences (EUCASS). 1–4 July 2019, Madrid, Spain. 1–13. DOI: 10.13009/EUCASS2019-518.
- 19. Fu H., Luo Z., Hu S., 2020. A temporal-spatial analysis and future trends of ammonia emissions in China. Sci. Total Environ., 731, 138897. DOI: 10.1016/j.scitotenv.2020.138897.
- 20. GAZ SYSTEM, 2018. Sustainable development report 2018. Available at: https://www.gaz-system.pl/en/for-the-media/annual-reports.html.
- 21. Giannakis E., Kushta J., Bruggeman A., Lelieveld J., 2019. Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations. Environ. Sci. Eur., 31, 93. DOI: 10.1186/s12302-019-0275-0.
- 22. Giompapa S., Farina A., Gini F., Graziano A., di Stefano R., 2007. Computer simulation of an integrated multi-sensor system for maritime border control. 2007 IEEE Radar Conference. 17–20 April 2007, Waltham, Massachusetts, 308–313. DOI: 10.1109/radar.2007.374233.
- 23. Greenblatt A., Panetta K., Agaian S., 2008. Border crossing detection and tracking through localized image processing. 2008 IEEE Conference on Technologies for Homeland Security. 12–13 May 2008. Waltham, MA, 333–338. DOI: 10.1109/ths.2008.4534473.
- 24. Gupta S.G., Ghonge M.M., Jawandhiya P.M., 2013. Review of unmanned aircraft system (UAS). IJARCET, 2(4), 1646–1658. DOI: 10.2139/ssrn.3451039.
- 25. Hanna S.R., Briggs G.A., Hosker Jr. R.P., 1982. Handbook on atmospheric diffusion. National Oceanic and Atmospheric Administration, Oak Ridge, TN (USA). Atmospheric Turbulence and Diffusion Lab.,Report No. DOE/TIC-11223 ON: DE82002045. DOI: 10.2172/5591108.
- 26. Hiemstra P., Karssenberg D., van Dijk A., 2011. Assimilation of observations of radiation level into an atmospheric transport model: a case study with the particle filter and the
- 27. ETEX tracer dataset. Atmos. Environ., 45, 6149–6157. DOI: 10.1016/j.atmosenv.2011.08.024.
- 28. Jafernik H., 2019. The Safety of unmanned aerial vehicle (UAV) missions in storm and precipitation areas. SFT, 54, 194–204. DOI: 10.12845/sft.54.2.2019.15.
- 29. James M., 2015. Simplified methods of using probit analysi in consequence analysis. Process Saf. Prog., 34, 58–63. DOI: 10.1002/prs.11686.
- 30. Jońca J., Pawnuk M., Bezyk Y., Arsen A., Sówka I., 2022. Droneassisted monitoring of atmospheric pollution – a comprehensive review. Sustainability, 14, 11516. DOI: 10.3390/su141811516.
- 31. Jones R., Lehr W., Simecek-Beatty D., Reynolds M., 2013. ALOHA R©Areal Locations of Hazardous Atmospheres) 5.4. 4. Technical Documentation. U.S. Dept. of Commerce, NOAA Technical Memorandum NOS OR&R 43. Seattle, WA: Emergency Response Division, NOAA.
- 32. Kamińska D., Sapiński T., Wiak S., Tikk T., Haamer R.E., Avots E., Helmi A., Ozcinar C., Anbarjafari G., 2019. Virtual reality and its applications in education: survey. Information, 10, 318. DOI: 10.3390/info10100318.
- 33. Kinaneva D., Hristov G., Raychev J., Zahariev P., 2019. Early forest fire detection using drones and artificial intelligence. 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). 20–24 May 2019, Opatija, Croatia, 1060–1065. DOI: 10.23919/MIPRO.2019.8756696.
- 34. Lambey V., Prasad A.D., 2021. A review on air quality measurement using an unmanned aerial vehicle. Water Air Soil Pollut., 232, 1–32. DOI: 10.1007/s11270-020-04973-5.
- 35. Lee H.E., Sohn J.-R., Byeon S.-H., Yoon S.J., Moon K.W., 2018. Alternative risk assessment for dangerous chemicals in South Korea regulation: comparing three modeling programs. Int. J. Environ. Res. Public Health, 15, 1600. DOI: 10.3390/ijerph15081600.
- 36. Liu L., Xu W., Lu X., Zhong B., Guo Y., Lu X., Zhao Y., He W., Wang S., Zhang X., Liu X., Vitousek P., 2022. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. PNAS, 119, e2121998119. DOI: 10.1073/pnas.2121998119.
- 37. Luo Z., Zhang Y., Chen W., Van Damme M., Coheur P.-F., Clarisse L., 2022. Estimating global ammonia (NH3) emissions based on IASI observations from 2008 to 2018. Atmos. Chem. Phys., 22, 10375–10388. DOI: 10.5194/acp-22-10375-2022.
- 38. Malm W.C., Schichtel B.A., Barna M.G., Gebhart K.A., Rodriguez M.A., Collett Jr. J.L., Carrico C.M., Benedict K.B., Prenni A.J., Kreidenweis S.M., 2013. Aerosol species concentrations and source apportionment of ammonia at Rocky Mountain
- 39. National Park. J. Air Waste Manage. Assoc., 63, 1245–1263. DOI: 10.1080/10962247.2013.804466.
- 40. Mustapić M., Domitrović A., Radišić T., 2021. Monitoring traffic air pollution using unmanned aerial systems, In: Petrović M.,
- 41. Novačko L. (Eds), Transformation of transportation. EcoProduction. Springer, Cham. DOI: 10.1007/978-3-030-66464-0_11.
- 42. Nandu V.N., Soman A.R., 2018. Consequence assessment of anhydrous ammonia release using CFD-probit analysis. Process Saf. Prog., 37, 525–534. DOI: 10.1002/prs.11970.
- 43. Naseem S., King A.J., 2018. Ammonia production in poultry houses can affect health of humans, birds, and the environment – techniques for its reduction during poultry production. Environ. Sci. Pollut. Res., 25, 15269–15293. DOI: 10.1007/s11356-018-2018-y.
- 44. National Academies of Sciences, Engineering, and Medicine, 2016. Acute exposure guideline levels for selected airborne chemicals: Volume 20. Washington, DC: The National Academies Press. DOI: 10.17226/23634.
- 45. National Research Council, 2001. Standing operating procedures for developing acute exposure guideline levels for hazardous chemicals. The National Academies Press, Washington, DC. 2001. DOI: 10.17226/10122.
- 46. National Research Council, 2010. Acute exposure guideline levels for selected airborne chemicals. Volume 9. The National Academies Press, Washington, DC. DOI: 10.17226/12978.
- 47. Neghab M., Mirzaei A., Kargar Shouroki F., Jahangiri M., Zare M., Yousefinejad S., 2018. Ventilatory disorders associated with occupational inhalation exposure to nitrogen trihydride (ammonia).Ind. Health, 56, 427–435. DOI: 10.2486/indhealth.2018-0014.
- 48. Orozco J.L., Van Caneghem J., Hens L., González L., Lugo R., Díaz S., Pedroso I., 2019. Assessment of an ammonia incident in the industrial area of Matanzas. J. Cleaner Prod., 222, 934–941. DOI: 10.1016/j.jclepro.2019.03.024.
- 49. Pan S.-Y, He K.-H., Lin K.-T., Fan C., Chang C.-T., 2022. Ad- dressing nitrogenous gases from croplands toward low-emission agriculture. npj Clim. Atmos. Sci., 5, 43. DOI: 10.1038/s41612-022-00265-3.
- 50. Pirrone N., Keating T., (Eds), 2010. Hemispheric transport of air pollution 2010. Part B: Mercury. Air Pollution Studies No. 18. Economic Commission for Europe Geneva. United Nations, New York and Geneva
- 51. Pobkrut T., Eamsa-ard T., Kerdcharoen T., 2016. Sensor drone for aerial odor mapping for agriculture and security services. 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). 28 June–1 July 2016. Chiang Mai, Thailand. DOI: 10.1109/ecticon.2016.7561340.
- 52. Rabajczyk A., Zboina J., Zielecka M., Fellner R., 2020. Monitoring of selected CBRN threats in the air in industrial areas with the use of unmanned aerial vehicles. Atmosphere, 11, 1373. DOI: 10.3390/atmos11121373.\Rasheed T., Bilal M., Nabeel F., Adeel M., Iqbal H.M.N., 2019.
- 53. Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int., 122, 52–66. DOI: 10.1016/j.envint.2018.11.038.
- 54. Sapek A., 2013. Ammonia emissions from non-agricultural sources. Polish J. Environ. Stud. 22, 63–70.
- 55. Šmídl V., Hofman R., 2013. Tracking of atmospheric release of pollution using unmanned aerial vehicles. Atmos. Environ., 67, 425–436. DOI: 10.1016/j.atmosenv.2012.10.054.
- 56. Sommer S.G., Webb J., Hutchings N.J., 2019. New emission factors for calculation of ammonia volatilization from european livestock manure management systems. Front. Sustain. Food Syst., 3, 101. DOI: 10.3389/fsufs.2019.00101.
- 57. Sutton M.A., Dragosits U., Tang Y.S., Fowler D., 2000. Ammonia emissions from non-agricultural sources in the UK. Atmos. Environ., 34, 855–869. DOI: 10.1016/S1352-2310(99)00362-3.
- 58. Thykier-Nielsen S., Deme S., Mikkelsen T., 1999. Description of the Atmospheric Dispersion Module RIMPUFF. RODOS(WG2)-TN(98)-02. Risø National Laboratory. Available at: https://citeseerx.ist.psu.edu/document?repid=rep1{&}type=pdf{&}doi=f41efa614a5fa79c5a7aafcdba64a284987b7fe7.
- 59. Tseng J.M., Su T.S., Kuo C.Y., 2012. Consequence evaluation of toxic chemical releases by ALOHA. Procedia Eng., 45, 384–389. DOI: 10.1016/j.proeng.2012.08.175.
- 60. U.S. Department of Energy, National Nuclear Security Administration, 2007. Atmospheric dispersion model validation in low wind conditions. Final Report. DOE/NV/25946–277.
- 61. U.S. Department of Energy, Office of Environment, Safety and Health, 2004. ALOHA computer code application guidance for documented safety analysis. Final Report. DOE-EH-4.2.1.3- ALOHA Code Guidance.
- 62. UNECE. 1999. Protocol to abate acidification eutrophication and ground-level ozone. Available at: https://unece.org/ environment-policy/air/protocol-abate-acidification- eutrophication-and-ground-level-ozone.
- 63. United Nations, 2013. Protocol to the 1979 Convention on longrange transboundary air pollution to abate acidification, eutrophication and ground-level ozone. Gothenburg (Sweden), 30 November 1999. Adoption of an amendment of the text of and Annexes II to IX to the protocol and addition of new Annexes X And XI.. Available at: https://treaties.un.org/doc/Publication/CN/2013/CN.155.2013-Eng.pdf.
- 64. Van Damme M., Clarisse L., Franco B., Sutton M.A., Erisman J.W., Kruit R.W., van Zanten M., Whitburn S., Hadji-Lazaro J., Hurtmans D., Clerbaux C., Coheur P.-F., 2021. Global, regional and national trends of atmospheric ammonia derived from a decadal (2008-2018) satellite record. Environ. Res. Lett., 16, 055017. DOI: 10.1088/1748-9326/abd5e0.
- 65. Van Damme M., Clarisse L., Whitburn S., Hadji-Lazaro J., Hurtmans D., Clerbaux C., Coheur P.-F., 2018. Industrial and agricultural ammonia point sources exposed. Nature, 564, 99–103. DOI: 10.1038/s41586-018-0747-1.
- 66. Vidi N., 2019. Drones and robots helped save Notre Dame, Available at: https://dronebelow.com/2019/04/19/drones-and-robots-helped-save-notre-dame/.
- 67. Wu C., Wang G., Li J., Li J., Cao C., Ge S., Xie Y., Chen J., Liu S., Du W., Zhao Z., Cao F., 2020. Non-agricultural sources dominate the atmospheric NH3 in Xi’an, a megacity in the semarid region of China. Sci. Total Environ., 722, 137756. DOI: 10.1016/j.scitotenv.2020.137756.
- 68. Wu Y., Gu B., Erisman J.W., Reis S., Fang Y., Lu X., Zhang X., 2016. PM2:5 pollution is substantially affected by ammonia emissions in China. Environ. Pollut., 218, 86–94. DOI: 10.1016/j.envpol.2016.08.027.
- 69. Wyer K.E., Kelleghan D.B., Blanes-Vidal V., Schauberger G., Curran T.P., 2022. Ammonia emissions from agriculture and their contribution to fine particulate matter: a review of implications for human health. J. Environ. Manage., 323, 116285. DOI: 10.1016/j.jenvman.2022.116285.
- 70. Xiang T.-Z., Xia G.-S., Zhang L., 2019. Mini-unmanned aerial vehicle-based remote sensing: techniques, applications, and prospects. IEEE Geosci. Remote Sens. Mag., 7, 29–63. DOI: 10.1109/mgrs.2019.2918840.
- 71. Zappa C.J., Brown S.M., Laxague N.J.M., Dhakal T., Harris R.A., Farber A.M., Subramaniam A., 2020. Using ship-deployed high-endurance unmanned aerial vehicles for the study of ocean surface and atmospheric boundary layer processes. Front. Mar. Sci., 6, 777. DOI: 10.3389/fmars.2019.00777.
- 72. Zhan X., Adalibieke W., Cui X., Winiwarter W., Reis S., Zhang L., Bai Z., Wang Q., Huang W., Zhou F., 2021. Improved estimates of ammonia emissions from global croplands. Environ. Sci. Technol., 55, 1329–1338. DOI: 10.1021/acs.est.0c05149.
- 73. Zheng J., Ma Y., Chen M., Zhang Q., Wang L., Khalizov A.F., Yao L., Wang Z., Wang X., Chen L., 2015. Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry. Atmos. Environ., 102, 249–259. DOI: 10.1016/j.atmosenv.2014.12.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15ec7c2d-a565-48aa-b87b-9c1eb75506e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.