Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of exponential decay for solutions of porous-thermoelasticity system, when time t ->∞ is studied. For sufficiently small values of parameter of intensity of elasticity-porosity interactions the exponential decaying is established. The idea of compact decoupling is applied for the system of equations. Exponential decay is proved first for the simpler decoupled system, then the prop erty is derived for the original system.
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--6
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Institute of Mathematics and Physics, University of Technology and Life Sciences, 85-796 Bydgoszcz, ul. Kaliskiego 7, Poland
autor
- Institute of Mathematics and Physics, University of Technology and Life Sciences, 85-796 Bydgoszcz, ul. Kaliskiego 7, Poland
Bibliografia
- [1] Alabau, F., and V. Komornik. “Boundary observ ability, controllability and stabilization of linear elastodynamic systems”. SIAM J. Control Optim. 37 (2), 1998: 521–542.
- [2] Burq, N., and G. Lebeau. “Measures de defaut de compacte, application au systeme de Lame”. Ann. Sci Ecole Norm. Sup. (4) 34, 6 (2001): 817–870.
- [3] Cheng, J., et al. “Lipschitz stability in lateral Cauchy problem for elasticity system”. J. Math. Kyoto Univ. 43 (3), 2003: 475–501.
- [4] Cowin, S.C., and J.W. Nunziato. “Linear elastic ma terials with voids”. J. Elasticity 13 (1983): 125–147.
- [5] Głowiński, P., and A. Łada. „Stabilization of elastici ty-viscoporosity system by linear boundary feed back”. Math. Methods Appl. Sci. 32 (2009): 702--722.
- [6] Głowiński, P., and A. Łada. „Asymtotic stability os solutions to the equations of linear elasticity and thermoelasticity in viscoporous media”. Demon startio Mathematica 42 (4), 2009: 754–779.
- [7] Guo, Bao-Zhu. “On the exponential stability of co-semigroups on Banach spaces with compact perturbations”. Semigroup Forum 59 (1999): 190--196.
- [8] Henry, D., O. Lopes, and A. Perissinitto. “On the essential spectrum of a semigroup of thermoelas ticity”. Nonlinear Anal. 21 (1993): 65–75.
- [9] Koch, H. “Slow decay in linear thermoelaticity”. Qurterly Appl. Math. 58 (4), 2000: 601–612.
- [10] Lebeau, G., and E. Zuazua. “Decay rates for the threedimensional linear system of thermoelasticity”. ARMA 148 (1999): 179–231.
- [11] Magana, A., and R. Quintanilla. “On the times de cay of solutions in one-dimensional theories of porous materials”. Internat. J. Solids Structures 43 (2006): 3414--3427.
- [12] Pazy, A. “Semigroups of linear operators and applications to partial diff erential equations”. Appl. Math. Sci. 44. Springer-Verlag, 1983.
- [13] Zuazua, E. “Controllability of the linear system of theormoelasticity”. J. Math Pures et Appl. 74 (1995): 291--315.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d6eceebf-18a1-4112-8b59-de11ad0eb0aa