Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of chestnut wood (Castanea sativa Mill.) is highly relevant in Central Italy, as it is one of the most important and abundant broad-leaf species in this geographical area. The comprehension of the modifications induced by thermal treatment is of crucial importance to define the optimal temperature that could improve the mechanical and physical properties without affecting significantly the visual appearance. In this paper a careful and complete investigation on the effect of thermal treatment on chestnut wood (Castanea sativa Mill.) is reported. The aim of this study is addressed to understand the chemical-physical modifications occurred on the surface of wood samples, as a consequence of heating, in order to choose the most suitable temperature of treatment, also in the view of applying a possible coating. No such complete and homogeneous study on chestnut wood was found in the literature, so this paper contributes to add relevant scientific and technological information on it. Samples of chestnut were thermally treated 6 hours in a conventional oven at 140°C, 170°C and 200°C. Surface properties of heated wood, in comparison with untreated, were evaluated through the measurements of: roughness, colour, Vickers and Brinell hardness, surface profile and contact angle. The behaviour of earlywood and latewood was evaluated by studying separately the effect of heating on contact angle and surface micro- -hardness. Fourier transform infrared spectroscopy was also used to evaluate the chemical modification of wood components due to thermal treatment. Heating at 140°C has little influence on wood characteristics whereas 200°C has a great impact on colour, mechanical properties and hydrophobicity behaviour. The intermediate temperature, i.e. 170°C, seems to give the best results in term of improved mechanical properties and also aesthetical appearance of wood surfaces.
Rocznik
Tom
Strony
5--24
Opis fizyczny
Bibliogr. 80 poz., rys., tab.
Twórcy
autor
- Department of Agriculture and Forest Sciences, Tuscia University, Viterbo, Italy
autor
- Department of Economics, Engineering, Society and Business Organization, Tuscia University, Viterbo, Italy
autor
- Department of Economics, Engineering, Society and Business Organization, Tuscia University, Viterbo, Italy
autor
- Department of Agriculture and Forest Sciences, Tuscia University, Viterbo, Italy
autor
- Department of Economics, Engineering, Society and Business Organization, Tuscia University, Viterbo, Italy
Bibliografia
- Agresti G., Castorina R., Genco G., Giagnacovo C., Lo Monaco A., Pelosi C. [2010]: Wood of chestnut in cultural Heritage. Acta Horticulturae 866: 51-57
- Agresti G., Bonifazi G., Calienno L., Capobianco G., Lo Monaco A., Pelosi C., Picchio R., Serranti S. [2013a]: Surface investigation of photo-degraded wood by color monitoring, infrared spectroscopy, and hyperspectral imaging. Journal of Spectroscopy 1 [1]: 380536
- Agresti G., Bonifazi G., Calienno L., Capobianco G., Lo Monaco A., Pelosi C., Picchio R., Serranti S. [2013b]: Colour modifications and hyperspectral imaging: non-invasive analysis of photo-degraded wood surfaces. Journal of Agricultural Engineering 44 [s2]: 19-26
- Akyildiz M.H., Ateş S. [2008]: Effect of heat treatment on Equilibrium Moisture Content (EMC) of some wood species in Turkey. Research Journal of Agriculture and Biological Science 4 [6]: 660-665
- Annesi T., Calienno L., Picchio R., De Simone D., Lo Monaco A. [2015]: Degradation of some technological features in the wood of ornamental species caused by Inonotus rickii (Pat.) Reid. Drewno 58 [195]: 5-18
- Antonović A., Jambreković V., Pervan S., Ištvanić J., Greger K., Bublić A. [2008]: A supplement to the research of native lignin of beech sapwood (Fagus sylvatica L.). Wood Research 53 [1]: 55-68
- Ateş S., Akyildiz M.H., Özdemir H., Gümüşkaya H. [2010]: Technological and chemical properties of chestnut (Castanea sativa Mill.) wood after heat treatment. Romanian Biotechnological Letters 15 [1]: 4949-4958
- Bonifazi G., Calienno L., Capobianco G., Lo Monaco A., Pelosi C., Picchio R., Serranti S. [2015]: Modeling color and chemical changes on normal and red heart beech wood by reflectance spectrophotometry, Fourier Transform Infrared spectroscopy and hyperspectral imaging. Polymer Degradation and Stability 113: 10-21
- Bonifazi G., Serranti S., Capobianco G., Agresti G., Calienno L., Picchio R., Lo Monaco A., Santamaria U., Pelosi C. [2017a]: Hyperspectral imaging as a technique for investigating the effect of consolidating materials on wood. Journal of Electronic Imaging 26 [1]: 011003
- Bonifazi G., Calienno L., Capobianco G., Lo Monaco A., Pelosi C., Picchio R., Serranti S. [2017b]. A new approach for the modelling of chestnut wood photodegradation monitored by different spectroscopic techniques. Environmental Science and Pollution Research 24 [16]: 13874-13884
- Boonstra M.J., Rijsdijk J.F., Sander C., Kegel E., Tjeerdsma B., Militz H., van Acker J., Stevens M. [2006]: Microstructural and physical aspects of heat treated wood. Part 2. Hardwoods. Maderas: ciencia y tecnologia 8 [3]: 209-217
- Boonstra M.J., Van Acker J., Tjeerdsma B.F., Kegel E.V. [2007]: Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science 64: 679-690
- Bourgeois J., Bartholin M.C., Guyonnet R. [1989]: Thermal treatment of wood: analysis of obtained product. Wood Science and Technology 23: 303-310
- Budakçı M., Cemil İlçe A., Sevim Korkut D., Gürleyen T. [2011]: Evaluating the surface roughness of heat-treated wood cut with different circular saws. Bioresources 6 [4]: 4247-4258
- Bulian F., Graystone J.A. [2009]: Industrial wood coating. Theory and practice. Elsevier, Amsterdam
- Calienno L., Lo Monaco A., Pelosi C., Picchio R. [2014]: Colour and chemical changes on photodegraded beech wood with or without red heartwood. Wood Science and Technology 48 [6]: 1167-1180
- Calienno L., Pelosi C., Picchio R., Agresti G., Santamaria U., Balletti F., Lo Monaco A. [2015] Light-induced color changes and chemical modification of treated and untreated chestnut wood surface. Studies in Conservation 60 [2]: 131-139
- Candelier K., Thevenon M.-F., Petrissans A., Dumarcay S., Gerardin P., Petrissans M. [2016]: Control of wood thermal treatment and its effects on decay resistance: a review. Annals of Forest Science 73: 571-58
- Capobianco G., Calienno L., Pelosi C., Scacchi M., Bonifazi G., Agresti G., Picchio R., Lo Monaco A. [2017]: Protective behaviour monitoring on wood photo-degradation by spectroscopic techniques coupled with chemometrics. Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy 172: 34-42
- Chang H.T., Yeh T.F., Chang S.T. [2002]: Comparisons of chemical characteristic variations for photodegraded softwood and hardwood with/without polyurethane clear coatings. Polymer Degradation and Stability 77 [1]: 129-135
- Chang T.C., Chang H.T., Wu C.L., Chang S.T. [2010]: Influences of extractives on the degradation of wood. Polymer Degradation and Stability 95 [4]: 516-521
- Chen Y., Fan Y., Gao J., Stark N.M. [2012]: The effect of heat treatment on the chemical and color change of black locust (Robinia pseudoacacia) wood flour. Bioresources 7: 1157-1170
- Colom X., Carrillo F., Nogués F., Garriga P. [2003]: Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability 80 [3]: 543-549
- Correal-Mòdol E., Wimmer T., Huber H., Schnabel T. [2014]: Approach for color homogenisation of chestnut (Castanea sativa [Mill.]) by thermal modification. International Wood Products Journal 5 [2]: 69-73
- De Cademartori P.H.G., Missio A.L., Mattos B.D., Gatto D.A. [2015]: Effect of thermal treatments on technological properties of wood from two Eucalyptus species. Annals of the Brazilian Academy of Sciences 87 [1]: 471-481
- Enjily V., Jones D. [2006]: The potential for modified materials in the panel products industry. Wood Resources and Panel Properties Conference, Spain, 12-14, June, COST Action E44/E49
- Esteves B.M., Pereira H.M. [2009]: Wood modification by heat treatment: a review. Bioresources 4 [1]: 370-404
- Genco G., Lo Monaco A., Pelosi C., Picchio R., Santamaria U. [2011]: A study of color change due to accelerated sunlight exposure in consolidated wood samples. Wood Research 56 [4]: 511-524
- George B., Suttie E., Merlin A., Deglise X. [2005]: Photodegradation and photostabilisation of wood - the state of the art. Polymer Degradation and Stability 88 [2]: 268-274.
- Gonzáles-Peña M.M., Hale M.D.C. [2009a]: Color in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: color evolution and color changes. Holzforshung 63: 385-393
- Gonzáles-Peña M.M., Hale M.D.C. [2009b]: Color in thermally modified wood of beech, Norway spruce and Scots pine. Part 2: property prediction from color changes. Holzforshung 63: 394-401
- Gonzáles-Peña M.M., Curling S.F., Hale M.D.C. [2009]: On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polymer Degradation and Stability 94 [12]: 2184-2193
- Gurleyen L., Esteves B., Ayata U., Gurleyen T., Cinar H. [2018]: The effects of heat treatment on color and glossiness of some commercial woods in Turkey. Drewno 61 [201]: 81-90
- Hakkou M, Pétrissans M, Zoulalian A, Gérardin G [2005]: Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability 89:1-5
- Helm R.F., Ranatunga T.D., Chandra M. [1997]: Lignin-hydrolyzable tannin interactions in wood. Journal of Agricultural and Food Chemistry 45 [8]: 3100-3106
- Herrera R., Erdocia X., Llano-Ponte R., Labidi J. [2014]: Characterization of hydrothermally treated wood in relation to changes in its on chemical composition and physical properties. Journal of Analytical Applied Pyrolysis 107: 256-266
- Herrera R., Krystofiak T., Labidi J., Llano-Ponte R. [2016]: Characterization of thermally modified wood at different industrial conditions. Drewno 59 [197]: 151-163
- Hon D.-N.S., Shiraishi N. [2001]: Color and discoloration and weathering and photochemistry of wood. In: Wood and cellulose chemistry. Eds. Hon, D.-N.S., Shiraishi, N. Marcel Dekker, New York: 385-442, 513-546
- Jarosombuti S., Ayrilmis N., Bauchongkol P., Fueangvivat V. [2010]: Surface characteristics and overlaying properties of MDF panels made from thermally treated rubberwood fibers. Bioresources 5 [2]: 968-978
- Kocaefe D., Poncsak S., Doré G., Younsi R. [2008]: Effect of heat treatment on the wettability of white ash and soft maple by water. Holz als Roh- und Werkstoff 66 [5]: 355-361
- Korkut S., Kocaefe D. [2009]: Effect of heat treatment on wood properties, Düzce University. Journal of Forest 5 [2]: 11-34
- Korkut D.S., Korkut S., Bekar I., Budakçı M., Dilik T., Çakıcıer N. [2008a]: The effects of heat treatment on the physical properties and surface roughness of Turkish hazel (Corylus colurna L.) wood. International Journal of Molecular Sciences 9: 1772-1783
- Korkut S., Akgul M., Dundar T. [2008b]: The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology 99 [6]: 1861-1868
- Kutnar A., Kričej B., Pavlič M., Petrič M. [2013]: Influence of treatment temperature on wettability of Norway spruce thermally modified in vacuum. Journal of Adhesion Science and Technology 27 [9]: 963-972
- Laskowska A., Sobczak J.W. [2018]: Surface chemical composition and roughness as factors affecting the wettability of thermo-mechanically modified oak (Quercus robur L.). Holzforschung 72 [11]: 993-1000
- Lo Monaco A., Marabelli M., Pelosi C., Picchio R. [2011]: Color measurements of surfaces to evaluate the restoration materials. In: O3A: Optics for Arts, Architecture, and Archaeology III, Eds. Pezzati, L., Salimbeni, R. SPIE, Washington, vol. 8084: 1-14
- Lo Monaco A., Calienno L., Pelosi C., Balletti F., Agresti G., Picchio R. [2015]: Technical properties of beech wood from aged coppices in central Italy. iForest 8: 82-88
- Marcon B., Goli G., Matsuo-Ueda M., Denaud L., Umemura K., Gril J., Kawai S. [2017]: Kinetic analysis of poplar wood properties by thermal modification in a conventional oven. iForests 11: 131-139
- Matsuo M., Yokoyama M., Umemura K., Gril J., Yano H., Kawai S. [2010]: Color changes in wood during heating: kinetic analysis by applying time-temperature superimposition method. Applied Physics A 99: 47-52
- Miklečić J., Jirouš-Rajković V., Antonović A., Španić N. [2011]: Discoloration of thermally modified wood during simulated indoor sunlight exposure. Bioresources 6 [1]: 434-446
- Miklečić J., Jirouš-Rajković V. [2016]: Influence of thermal modification on surface properties and chemical composition of Beech wood (Fagus sylvatica L.). Drvna Industrija 67 [1]: 65-71
- Moore A.K., Owen N. [2001]: Infrared spectroscopic studies of solid wood. Applied Spectroscopy Reviews 36 [1]: 65-86
- Naumann A., Peddireddi S., Kües U., Polle A. [2007]: Fourier transform infrared microscopy in wood analysis. In: Wood production, wood technology, and biotechnological impacts. Ed. Kües, U. Universitätsveralg, Göttingen: 179-196
- Nzokou P., Kamdem P.D. [2006]: Influence of wood extractives on the photo-discoloration of wood surfaces exposed to artificial weathering. Industrial Applications 31 [5]: 425-434
- Oliveira R.M.D., Brisolari A., Sales A., Gonçalves D. [2010]: Wettability, shrinkage and color changes of Araucaria angustifolia after heating treatment. Materials Research 13 [3]: 351-354
- Oltean L., Teischinger A., Hansmann C. [2008]: Wood surface discoloration due to the simulated indoor sunlight exposure. Holz als Roh- und Werkstoff 66 [1]: 51-56
- Pandey K.K. [1999]: A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science 71: 1969-1975
- Pandey K.K. [2005a]: Study of the effect of photo-irradiation on the surface chemistry of wood. Polymer Degradation and Stability 90 [1]: 9-20
- Pandey K.K. [2005b]: A note on the influence of extractives on the photo-discoloration and photodegradation of wood. Polymer Degradation and Stability 87 [2]: 375-379
- Pelosi C., Agresti G., Calienno L., Lo Monaco A., Picchio R., Santamaria U., Vinciguerra V. [2013]: Application of spectroscopic techniques for the study of the surface changes in poplar wood and possible implications in conservation of wooden artefacts. In: Optics for Arts, Architecture, and Archaeology IV. Eds. Pezzati, L., Targowski, P. SPIE, Washington. vol. 8790: 1-14
- Pétrissans M., Gérardin P., El Bakali I., Serraj M. [2005]: Wettability of heat-treated wood. Holzforschung 57 [3]: 301-307
- Priadi T., Hiziroglu S. [2013]: Characterization of heat treated wood species. Materials and Design 49: 575–582
- Poncsak S., Kocaefe D., Bouazara M., Pichette A. [2006]: Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Science and Technology 40 [8]: 647-663
- Salca E.A., Hiziroglu S. [2014]: Evaluation of hardness and surface quality of different wood species as function of heat treatment. Materials and Design 62: 416–423
- Sharratt V., Hill C.A.S., Kint D.P.R. [2009]: A study of early color change due to simulated accelerated sunlight exposure in Scots pine (Pinus sylvestris). Polymer Degradation and Stability 94 [9]: 1589-1594
- Scheikl M., Dunky M. [1998]: Measuring static and dynamic contact angles on wood for the determination of its surface tension and the penetration of liquids into the wood surface. Holzforschung 52: 89-94
- Shi J.L., Kocaefe D., Zhang J. [2007]: Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz als Roh- und Werkstoff 65: 255–259
- Teacǎ C.A., Roşu D., Bodîrlǎu R., Roşu L. [2013]: Structural changes in wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements – a brief review. Bioresources 8 [1]: 1478-1507
- Tjeerdsma B.F., Militz H. [2005]: Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz als Roh- und Werkstoff 63: 102-111
- Tolvaj L., Faix O. [1995]: Artificial ageing of wood monitored by DRIFT spectroscopy and CIEL*a*b* Color Measurements. Holzforschung 49: 397-404
- Tudorović N., Popović Z., Milić G., Popadić R. [2012]: Estimation of heat treated wood properties by color change. Bioresources 7: 799-815
- Venanzi R., Picchio R., Piovesan G. [2016]: Silvicultural and logging impact on soil characteristics in Chestnut (Castanea sativa Mill.) Mediterranean coppice. Ecological Engineering 92: 82-89
- Yildiz S., Gezer E.D., Yildiz U.C. [2006]: Mechanical and chemical behavior of spruce wood modified by heat. Building and Environment 41 [12]: 1762-1766
- Yildiz S., Gümüskaya E. [2007]: The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Building and Environment 42 [1]: 62-67
- Zahri S., Belloncle C., Charrier F., Pardon P., Quideau S., Charrier B. [2007]: UV light impact on ellagitannins and wood surface color of European oak (Quercus petraea and Quercus robur). Applied Surface Science 253 [11]: 4985-4989
- Živković V., Arnold M., Radmanović K., Richter K., Turkulin H. [2014]: Spectral sensitivity in the photodegradation of fir wood (Abies alba Mill.) surfaces: color changes in natural Weathering. Wood Science and Technology 48 [2]: 239-252
- List of standards
- DIN 4768:1990 Determination of values of surface roughness parameters Ra, Rz, Rmax using electrical contact (stylus) instruments. Concepts and measuring conditions
- ISO 11664-4:2008 Colorimetry - Part 4: CIE 1976 L*a*b* Colour space
- ISO 4287:1997 Geometrical product specifications – Surface texture profile method – Terms, definitions and surface texture parameters
- UNI EN 1534:2011 Wood flooring – Determination of resistance to indentation – Test method
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cda8bff0-2800-4fb5-a673-4b183d74ae28