PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The state of the art analysis and methodological assumptions of evaluation and development prediction for materials surface technologies

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of the paper is to present an analysis of the state of the art including the general development trends and most prospective areas of materials surface engineering and to describe the general methodological concept for the evaluation and prediction of materials surface technology development, with special consideration given to methods for generating a pool of critical materials surface technologies. Design/methodology/approach: The paper was prepared by reviewing the international literature devoted to the latest trends in materials surface engineering and discusses the general methodological assumptions for the research conducted under the technology foresight of materials surface engineering. Findings: Presentation of the most important trends, directions and areas of materials surface engineering and of the general methodology for the evaluation and prediction of materials surface technology development. Research limitations/implications: The state of the art analysis and the methodology presented form constituent part of the technology foresight of materials surface engineering. Practical implications: One of the final effects of the technology foresight of materials surface engineering is to establish the Critical Technologies Book comprising technology roadmaps and technology information sheets. The Book is characterising, in a harmonised fashion, the critical materials surface technologies, which is a convenient tool of comparative analysis, especially for SMEs lacking the funds sufficient to pursue their own research in this field. Originality/value: The paper is presenting the general development trends and most prospective areas of materials surface engineering and an original, newly established customs, methodological concept for the evaluation and prediction of materials surface engineering development.
Rocznik
Strony
121--141
Opis fizyczny
Bibliogr. 216 poz., rys., tab.
Twórcy
  • Institute of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] The Future of Manufacturing in Europe 2015-2020, The Challenge for Sustainability, Materials, Final Report, Groupe CM International, 2003, http://ec.europa.eu/ research/industrial_technologies/pdf/pro-futman-doc3a.pdf, 2011.
  • [2] F. Brandes, A. Lejour, G. Verweij, F. van der Zee, The Future of Manufacturing in Europe, Final Report, 2007, http://ec.europa.eu/enterprise/policies/industrial-competitive-ness/files/industry/doc/future_manufacturing_europe_final-_report_en.pdf, 2011.
  • [3] L.A. Dobrzański, Engineering materials and materials design. Fundamentals of materials science and physical metallurgy, WNT, Warsaw, 2006 (in Polish).
  • [4] L.A. Dobrzański, Fundamentals of metal materials structure and properties formation, Silesian University of Technology Publishing House, Gliwice, 2007 (in Polish).
  • [5] L.A. Dobrzański, E. Hajduczek, J. Marciniak, R. Nowosielski, Physical metallurgy and heat treatment of tool materials, WNT, Warsaw, 1990 (in Polish).
  • [6] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (eds.), Analysis of the existing situation in terms of the development of technologies and social-economic conditions with regard to the FORSURF project, International OSCO World Press, Gliwice, 2010 (in Polish).
  • [7] L.A. Dobrzański, Shaping the structure and properties of engineering and biomedical material surfaces, International OCSCO World Press, Gliwice, 2009 (in Polish).
  • [8] C.A. Harper, Handbook of Plastics, Elastomers and Composites, McGraw-Hill, New York, 1992.
  • [9] A.D. Dobrzańska-Danikiewicz, T. Tański, S. Malara, J. Domagała-Dubiel, Assessment of strategic development perspectives of laser treatment of casting magnesium alloys, Archives of Materials Science and Engineering 45/1 (2010) 5-39.
  • [10] A.D. Dobrzańska-Danikiewicz, K. Lukaszkowicz, Technology validation of coatings deposition onto the brass substrate, Archives of Materials Science Engineering 46/1 (2010) 5-38.
  • [11] A.D. Dobrzańska-Danikiewicz, E. Jonda, K. Labisz, Foresight methods application for evaluating laser treatment of hot-work steels, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 750-773.
  • [12] A.D. Dobrzańska-Danikiewicz, E. Hajduczek, M. Polok-Rubiniec, M. Przybył, K. Adamaszek, Evaluation of selected steel thermochemical treatment technology using foresight methods, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 115-146.
  • [13] A.D. Dobrzańska-Danikiewicz, K. Gołombek, D. Pakuła, J. Mikuła, M. Staszuk, L.W. Żukowska, Long-term development directions of PVD/CVD coatings deposited onto sintered tool materials, Archives of Materials Science and Engineering 49/2 (2011) 69-96.
  • [14] A.D. Dobrzańska-Danikiewicz, A. Drygała, Strategic development perspectives of laser processing on polycrystalline silicon surface, Archives of Materials Science and Engineering 50/1 (2011) 5-20.
  • [15] A.D. Dobrzańska-Danikiewicz, A. Kloc-Ptaszna, B. Dołżańska, Manufacturing technologies of sintered graded tool materials evaluated according to foresight methodology, Archives of Materials Science and Engineering 50/2 (2011) 69-96.
  • [16] A.D. Dobrzańska-Danikiewicz, J. Trzaska, A. Jagiełło, E. Jonda, K. Labisz, Neural networks aided future events scenarios presented on the example of laser surface treatment, Archives of Materials Science and Engineering 51/2 (2011) 69-96.
  • [17] A.D. Dobrzańska-Danikiewicz, P. Rytlewski, K. Moraczewski, M. Stepczyńska, Development perspectives of selected technologies of polymer surface layers modification, Archives of Materials Science and Engineering 52/1 (2011) 23-45.
  • [18] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Engineering materials surface treatment, Open Access Library 5 (2011) (in Polish).
  • [19] A.D. Dobrzańska-Danikiewicz (ed.), Materials surface engineering development trends, Open Access Library 6 (2011) 1-594.
  • [20] Foresight of surface properties formation leading technologies of engineering materials and biomaterials FORSURF, www.forsurf.pl, 2012.
  • [21] A.D. Dobrzańska-Danikiewicz, Computer Integrated Development Prediction Methodology in Materials Surface Engineering, work in progress.
  • [22] A.A. Aliev, A.Yu. Ampilogov, A.A. Aliev, Carburizing and nitrocarburizing of automotive part in a fluidized bed, Metal Science and Heat Treatment 51/3-4 (2009) 181-183.
  • [23] A.H. Deutchman, R.J. Partyka, Practical applications of ion nitriding: a new surface treatment technique, Industrial Heating 55/2 (1988) 30-31.
  • [24] C. Mitterer, F. Holler, D. Reitberger, E. Badisch, M. Stoiber, C. Lugmair, R. Nobauer, T. Muller, R. Kullmer, Industrial applications of PACVD hard coatings, Surface and Coatings Technology 163-164 (2003) 716-722.
  • [25] S. Veprek, M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surface and Coatings Technology 202 (2008) 5063-5073.
  • [26] A.M. Merlo, The contribution of surface engineering to the product performance in the automotive industry, Surface and Coatings Technology 174-175 (2003) 21-26.
  • [27] J.M. Lackner, Industrially-scaled large-area and high-rate tribological coating by Pulsed Laser Deposition, Surface and Coatings Technology 200 (2005) 1439-1444.
  • [28] J. Schulte, Nanotechnology: global strategies, industry trends and applications, John Wiley and Sons, 2005.
  • [29] J.M. Baek, Y.R. Cho, D.J. Kim, K.H. Lee, Plasma carburizing process for the low distortion of automobile gears, Surface and Coatings Technology 131 (2000) 568-573.
  • [30] J. Dobrzański, Materials science interpretation of the life of steels for power plants, Open Access Library 3 (2011) 1-228 (in Polish).
  • [31] J. Smolik, A. Mazurkiewicz, Hybrid Technologies development on the basis of practical industrial applications, Maintenance Problems 3 (2010) 105-114 (in Polish).
  • [32] Z. Fang, G. Lockwood, A. Griffo, A dual composite of WC-Co, Metallurgical and Materials Transactions A 30 (1999) 3231-3238.
  • [33] K. Narasihmhan, S.P. Boppana, D.G. Bhat, Development of a graded TiCN coating for cemented carbide cutting tools -a design approach, Wear 188 (1995) 123-129.
  • [34] M. Riabkina-Fishman, E. Rabkin, P. Levin, N. Frage, [53 M.P. Dariel, A. Weisheit, R. Galun, B.L. Mordike, Laser produced functionally graded tungsten carbide coatings on M2 high-speed tool steel, Materials Science and Engineering A 302/1 (2001) 106-114.
  • [35] Y.P. Zhang, Z.R. Zhou, J.M. Cheng, Y.L. Ge, H. Ma, Laser remelting of NiCoCrAlY clad coating on superalloy, Surface and Coatings Technology 79 (1996) 131-134.
  • [36] T. Dümmer, B. Eigenmann, M. Stüber, H. Leiste, D. Löhe, H. Müller, O. Vöhringer, Depth-resolved X-ray analysis of residual stresses in graded PVD coatings of Ti(C,N), Zeitschrift für Metallkunde 90/10 (1999) 780-787.
  • [37] B.A. Movchan, K.Yu Yakovchuk, Graded thermal barrier coatings, deposited by EB-PVD, Surface and Coatings Technology 188-189 (2004) 85-92.
  • [38] E. Marin, L. Guzman, A. Lanzutti, L. Fedrizzi, M. Saikkonen, Chemical and electrochemical characterization of hybrid PVD + ALD hard coatings on tool steel, Electrochemistry Communications 11 (2009) 2060-2063.
  • [39] T.A. Panaioti, Ion nitriding of tantalum and niobium alloys, [60 Metal Science and Heat Treatment 44/9-10 (2002) 437.
  • [40] M.R. Bayati, R. Molaei, K. Janghorban, Surface alloying of carbon steels from electrolytic plasma, Metal Science and Heat Treatment 53/1-2 (2011) 91-94.
  • [41] S.G. Walton, C. Muratore, D. Leonhardt, R.F. Fernsler, D.D. Blackwell, R.A. Meger, Electron-beam- generated plasmas for materials processing, Surface and Coatings Technology 186 (2004) 40-46.
  • [42] H. Griffiths, C. Xu, T. Barrass, M. Cooke, F. Iacopi, P. Vereecken, S. Esconjauregui, Plasma assisted growth of nanotubes and nanowires, Surface and Coatings Technology 201 (2007) 9215-9220.
  • [43] L.M. Apátiga, E. Rubio, E. Rivera, V.M. Castaño, Surface morphology of nanostructured anatase thin films prepared [66 by pulsed liquid injection MOCVD, Surface and Coatings Technology 201 (2006) 4136-4138.
  • [44] T. Genevès, L. Imhoff, B. Domenichini, P. Maurice Peterlé, S. Bourgeois, CVD elaboration and in situ characterization [68 of barium silicate thin films, Journal of the European Ceramic Society 30 (2010) 441-446.
  • [45] W. Diehl, V. Sittinger, B. Szyszka, Thin film solar cell technology in Germany, Surface and Coatings Technology 193 (2005) 329-334.
  • [46] M. Langlet, A Kim, M Audier, C Guillard, J.M Herrmann, Transparent photocatalytic films deposited on polymer substrates from sol-gel processed titania sols, Thin Solid Films 429/1-2 (2003) 13-21.
  • [47] T. Burakowski, T. Wierzchoń, Metals surface engineering, [72 WNT, Warsaw, 1995 (in Polish).
  • [48] J. Łaskawiec, Surface engineering, Silesian University of [73 Technology Publishing House, Gliwice, 1997 (in Polish).
  • [49] M. Blicharski, Surface engineering, WNT, Warsaw, 2009 (in Polish).
  • [50] M. Kupczyk, Surface engineering, Anti-wear coatings for cutting edges, Poznan University of Technology Publishing House, Poznan, 2004 (in Polish).
  • [51] K. Przybyłowicz, J. Przybyłowicz, Metal science in the questions and the answers, WNT, Warsaw, 2004.
  • [52] S. Tkaczyk (ed.), Protective coatings, Silesian University of Technology Publishing House, Gliwice, 1997 (in Polish).
  • [53] A. Kozłowski, J. Tymowski, T. Żak, Manufacturing techniques. Protective coatings, PWN, Warsaw, 1978.
  • [54] R.F. Bunshah (ed.), Handbook of Hard Coatings, William Andrew Publishing, Noyes, 2001.
  • [55] R.F. Bunshah (ed.), Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, Second Edition, Materials science and process technology series, Noyes Publications, Park Ridge, N.J., 1994.
  • [56] A.A.Tracton (ed.), Coatings Technology Handbook, Third Edition, Diversified Enterprises, 2005.
  • [57] R.L. Boxman, D.M. Sanders, P.J. Martin (eds.), Handbook of Vacuum Arc Science and Technology, Noyes Publications, Park Ridge, N.J., 1997.
  • [58] C.P. Poole, F.J. Owens, Introduction to nanotechnology, Wiley-IEEE, 2003.
  • [59] K.H. Jürgen Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssiere (eds.), Encyclopedia of Materials - Science and Technology, Elsevier, Oxford, UK, 2001.
  • [60] T. Burakowski, Considerations about synergisms in surface engineering, Radom University of Technology Publishing House, Radom, 2004 (in Polish).
  • [61] W. Schatt, Sintervorgänge-Grundlagen, VDI-Verlag GmbH, Düsseldorf, Germany, 1992 (in German).
  • [62] P. Cichosz, Cutting tools, WNT, Warsaw, 2006 (in Polish).
  • [63] D.M. Mattox, The foundations of vacuum coating technology, Noyes Publications/William Andrew Publishing, Norwich, New York, 2003.
  • [64] A. Klimpel, Laser technologies in welding, Silesian University of Technology Publishing House, Gliwice, 2011 (in Polish).
  • [65] D. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films, John Wiley and Son, 1994.
  • [66] M. Żenkiewicz, Adhesion and surface layer modification of multiparticles plastics, WNT, Warsaw, 2000 (in Polish).
  • [67] H.J. Saechtling, Plastics. Guide, WNT, Warsaw, 2000 (in Polish).
  • [68] G. Hunt, M.D. Mehta, Nanotechnology: risk, ethics and law, Earthscan, 2006.
  • [69] E. Knystautas (ed.), Engineering Thin Films and Nanostructures with Ion Beams, Taylors & Francis, BocaRaton - London - New York - Singapore, 2005.
  • [70] G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, London, 2004.
  • [71] H. Brune, H. Ernst, G. Schmid, Nanotechnology: assessment and perspectives, Springer, 2006.
  • [72] Z. Rdzawski, Alloying Cooper, Silesian University of Technology Publishing House, Gliwice, 2009 (in Polish).
  • [73] Z. Zinowicz, Organic coatings in anticorrosive technique, Lublin University of Technology Publishing House, Lublin, 2003 (in Polish).
  • [74] R.M. Souza, M. Ignat, C.E. Pinedo, A.P. Tschiptschin, Structure and properties of low temperature plasma carburized austenitic stainless steels, Surface and Coatings Technology 204/6-7 (2009) 1102-1105.
  • [75] T. Babul, N. Kucharieva, A. Nakonieczny, J. Senatorski, Structure and Properties of Nitrocarburized Diffusion Layers Generated on High-Speed Steels, Journal of Materials Engineering and Performance 12/6 (2003) 696-700.
  • [76] Z. Nitkiewicz, M. Gwoździk, D. Dyja, Abrasion resistance of martensitic steels after ion nitriding process, Acta Metallurgica Slovaca 13/5 (2007) 439-443 (in Polish).
  • [77] J. Kmiński, A. Brojanowska, J.J. Kazior, T. Wierzchoń, Corrosion resistance of nitrided layers produced in low temperature ion nitriding processes on the base of the AISI 316L sintered steel, Protection against Corrosion 52/4-5 (2009) 177-182 (in Polish).
  • [78] M. Szota, J. Jasiński, L. Jeziorski, R. Torbus, G. Walczak, K. Kaczmarek, Fluid bed heat treatment of tool steel, Surface Engineering 3 (2007) 26-29 (in Polish).
  • [79] S. Veprek, M.J.G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surface and Coatings Technology 202 (2008) 5063-5073.
  • [80] P. Kula, P. Olejnik, J. Kowalewski, A new vacuum carburizing technology, Heat Treatment Progress 2-3 (2001) 57-60.
  • [81] L.A. Dobrzański, K. Gołombek, E. Hajduczek, Structure of the nanocrystalline coatings obtained on the CAE process on the sintered tool materials, Journal of Materials Processing Technology 175 (2006) 157-162.
  • [82] L.A. Dobrzański, K. Lukaszkowicz, K. Labisz, Structure, texture and chemical composition of coatings deposited by PVD techniques, Archives of Materials Science and Engineering 37/1 (2009) 45-52.
  • [83] T.P. Martin, K.K.S. Lau, K. Chan, Y. Mao, M. Gupta, W.S. O'Shaughnessy, K.K. Gleason, Initiated chemical vapor deposition (iCVD) of polymeric nanocoatings, Surface and Coatings Technology 201 (2007) 9400-9405.
  • [84] C.J. Chung, T.H. Chung, Y.M. Shin, Y. Kim, Characteristics of nitrogen-incorporated silicon oxycarbide films and plasmas for plasma enhanced chemical vapor deposition with TMOS/N2/NH3, Current Applied Physics 10 (2010) 428-435.
  • [85] L.A. Dobrzański, B. Dołżańska, K. Gołombek, G. Matula, Characteristics of structure and properties of a sintered graded tool materials with cobalt matrix, Archives of Materials Science and Engineering 47/2 (2011) 69-76.
  • [86] W. Lengauer, K. Dreyer, Functionally graded hardmetals, Journal of Alloys and Compounds 338 (2002) 194-212.
  • [87] Y.T. Pei, T.C. Zuo, Gradient microstructure in laser clad TiC-reinforced Ni-alloy composite coating, Materials Science and Engineering A 241/1-2 (1998) 259-263.
  • [88] J. Kusiński, Wear properties of T15 PM HSS made indexable inserts after laser surface melting, Journal of Materials Processing Technology 64 (1997) 239-246 (in Polish).
  • [89] B. Major, R. Ebner, Constitution of metal materials surface layer by laser treatment, Surface Engineering 1 (1996) 53-65 (in Polish).
  • [90] M. Bonek, L.A. Dobrzański, E. Hajduczek, A. Klimpel, Laser modification of surface layer properties of a hot-work tool steel, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 152-156.
  • [91] L.A. Dobrzański, M. Musztyfaga, A. Drygała, Selective laser sintering method of manufacturing front electrode of silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 111-119.
  • [92] J.F. Pollock, K.E. Healy, Mechanical and swelling characterization of poly(N-isopropyl acrylamide-co-methoxy poly (ethylen glycol) methacrylate) sol-gels, Acta Biomaterialia 6 (2010) 1307-1318.
  • [93] D.M. Bieliński, P. Lipiński, J. Jagielski, W. Okrój, L. Klimek, Selected examples of polymer surface layers modification using ion bombardment, Materials Engineering 27/6 (2006) 1337-1342 (in Polish).
  • [94] A.D. Dobrzańska-Danikiewicz, E-foresight of materials surface engineering, Archives of Materials Science Engineering 44/1 (2010) 43-50.
  • [95] A.D. Dobrzańska-Danikiewicz, Technology e-foresight for validation, development prediction and technology roadmapping, in: Public Organisation Co-operation (eds.: W. Kieżun, A. Letkiewicz, J. Wołejszo), Vol. II, Publishing and Printing Division of the Higher Police School, Szczytno, 2011, 507-518 (in Polish).
  • [96] A.D. Dobrzańska-Danikiewicz, Computer aided foresight methods applied into surface engineering area, Technical Journal 4-M/2011/A 108/7 (2011) 49-56 (in Polish).
  • [97] A.D. Dobrzańska-Danikiewicz, Materials surface engineering e-foresight, Quality Problems 11 (2011) 45-49 (in Polish).
  • [98] A.D. Dobrzańska-Danikiewicz, Foresight methods for technology validation, roadmapping and development in the surface engineering area, Archives of Materials Science Engineering 44/2 (2010) 69-86.
  • [99] A.D. Dobrzańska-Danikiewicz, Foresight of material surface engineering as a tool building a knowledge- based economy, Materials Science Forum 706-709 (2012) 2511-2516.
  • [100] A.D. Dobrzańska-Danikiewicz, Foresight of materials surface engineering as a tool stimulating sustainable development and to increase the quality of technology, Journal of Machine Engineering 10/3 (2010) 48-59.
  • [101] A.D. Dobrzańska-Danikiewicz, The methodological fundaments of development state analysis of surface engineering technologies, Journal of Achievements in Materials and Manufacturing Engineering 40/2 (2010) 203-210.
  • [102] A.D. Dobrzańska-Danikiewicz, Main assumption of the foresight of surface properties formation leading technologies of engineering materials and biomaterials, Journal of Achievements in Materials and Manufacturing Engineering 34/2 (2009) 165-171.
  • [103] A.D. Dobrzańska-Danikiewicz, K. Lukaszkowicz, Technology strategic development directions of PVD coatings deposition onto the brass substrate, Materials Engineering 4 (2011) 558-561 (in Polish).
  • [104] A.D. Dobrzańska-Danikiewicz, The PVD technologies development directions determined on the base of foresight research results, Technological Forecasting and Social Change (2012), in press.
  • [105] A.D. Dobrzańska-Danikiewicz, K. Gołombek, D. Pakuła, J. Mikuła, M. Staszuk, L.W. Żukowska, Assessment of PVD/CVD onto sintered tool materials according to foresight methodology, Journal of Materials Processing Technology (2012), in press.
  • [106] A.D. Dobrzańska-Danikiewicz, T. Tański, S. Malara, J. Domagała-Dubiel, Technology foresight results concerning laser surface treatment of casting magnesium alloys, in: Magnesium Alloys (ed. W.A. Monteiro), InTech, Brasil, 2012, in press.
  • [107] L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, M. Król, J. Domagała-Dubiel, S. Malara, The structure and properties of Mg-Al-Zn alloys, Open Access Library 1 (7) (2012) (in Polish), in press.
  • [108] A.D. Dobrzańska-Danikiewicz, A. Drygała, Foresight methodology application for laser texturing of silicon surface, Proceedings of Ukrainian-Polish Scientific Conference “Mechanics and Computer Science”, Chmielnicki, Ukraine, 2011, 156-157.
  • [109] A. Mortensen, S. Suresh, Functionally graded metals and metal-ceramic composites: Part I Processing, International Materials Review 40/6 (1995) 239-265.
  • [110] Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, R.G. Ford, Functionally Graded Materials, Kluwer Academic Publishers, Boston, 1999.
  • [111] B. Major, T. Wierzchoń, E. Reinhold, W. Wołczyński, J. Bojarski, G. Krużel, Graded materials on titanium matrix, Materials Engineering 6 (2000) 340-343.
  • [112] T. Hejwowski, Wear resistance of graded coatings, Vacuum 65 (2002) 515-520.
  • [113] L.A. Dobrzański, Design and manufacturing functional gradient tool materials - dependence properties on technology and thickness of surface layers with a gradient of both chemical and phase composition manufactured on tool from different applications. Design and manufacturing functional gradient materials, The Polish Academy of Science, Cracow, 2007.
  • [114] L.A. Dobrzański, A. Kloc-Ptaszna, G. Matula, J.M. Torralba, Characteristics of structure and properties of a sintered graded tool materials, Materials Engineering 28/3-4 (2007) 138-142.
  • [115] L.A. Dobrzański, K. Gołombek, Structure and properties of the cutting tools made from cemented carbides and cermets with the TiN + mono-, gradient- or multi(Ti,Al,Si)N + TiN nanocrystalline coatings, Journal of Materials Processing Technology 164-165 (2005) 805-815.
  • [116] H. Dosch, M.H. Van de Voorde (eds.), Gennesys, White Paper, A New European Partnership between Nanomaterials Science & Nanotechnology and Synchrotron Radiation and Neuron Facilities, Max-Planck-Insititut für Metalforschung, Stuttgart, 2009.
  • [117] L.A. Dobrzański, R. Nowosielski, A. Przybył, J. Konieczny, Soft magnetic nanocomposite with powdered metallic ribbon based on cobalt and polymer matrix, Journal of Materials Processing Technology 162-163 (2005) 20-26.
  • [118] M. Żenkiewicz, J. Richert, P. Rytlewski, K. Moraczewski, Some effects of corona plasma treatment of polylactide/ montmorillonite nanocomposite films, Plasma Processes and Polymers 6 (2009) S387-S391.
  • [119] J. Blazevska-Gilev, J. Kupcik, J. Subrt, Z. Bastl, V. Vorlicek, A. Galikova, D. Spaseska, IR laser ablation of poly(vinyl chloride): Formation of monomer and deposition of nanofibres of chlorinated polyhydrocarbon, Polymer Degradation and Stability 91 (2006) 213-220.
  • [120] F. Hanus, K. Kolev, A. Jadin, L.A. Laude, Excimer laser -induced copper nanocluster formation in mixed PMMA/cop-per acetyloacetonate films, Applied Surface Science 154-155 (2000) 320-323.
  • [121] J. Smolik, M. Gulde, J. Walkowicz, J. Suchanek, Influence of the structure of the composite: 'nitrided layer/PVD coating' on the durability of forging dies made of steel DIN-1.2367, Surface and Coatings Technology 180-181 (2004) 506-511.
  • [122] M. Polok-Rubiniec, L.A. Dobrzański, M, Adamiak, Comparison of the PVD coatings deposited onto plasma nitrided steel, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 172-179.
  • [123] K. Dybowski, Ł. Kaczmarek, R. Pietrasik, J. Smolik, Ł. Kołodziejczyk, D. Batory, M. Gzik, M. Stegliński, Influence of chemical heat treatment on the mechanical properties of paper knife-edge die, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 422-427.
  • [124] B. Podgornik, S. Hogmark, O. Sandberg, V. Leskovsek, Wear resistance and anti-sticking properties of duplex treated forming tool steel, Wear 254/11 (2003) 1113-1121.
  • [125] J. Baranowska, B. Arnold, Corrosion resistance of nitrided layers on austenitic steel, Surface and Coatings Technology 200/22-23 (2006) 6623-6628.
  • [126] I. Pokorska, Properties of composite layers obtained by combined treatment, Metal Science and Heat Treatment 47/11-12 (2005) 520-521.
  • [127] M. Talikowski, I. Ulbin-Pokorska, T. Wierzchoń, Microstructure of the composite oxynitrided chromium layers produced on steel by a duplex method, Surface and Coatings Technology 201/6 (2006) 2776-2781.
  • [128] L.A. Dobrzański, K. Lukaszkowicz, Mechanical properties of monolayer coatings deposited by PVD techniques, Archives of Materials Science and Engineering 28/9 (2007) 549-556.
  • [129] L.A. Dobrzański K. Lukaszkowicz, A. Zarychta, Mechanical properties of monolayer coatings deposited by PVD techniques, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 423-426.
  • [130] P. Wu, C.Z. Zhou, X.N. Tang, Laser alloying of a gradient metal-ceramic laser to enhance wear properties, Surface and Coatings Technology 73/1-2 (1995) 111-114.
  • [131] J.H. Abboud, Functionally gradient titanium-aluminide composites produced by laser cladding, Journal of Materials Science 29/13 (1994) 3393-3398.
  • [132] L.A. Dobrzański, A. Drygała, Laser texturisation in technology of multicrystalline silicon solar cells, Journal of Achievements in Materials and Manufacturing Engineering 29/1 (2008) 7-14.
  • [133] M. Shen, M.B. Bever, Gradients in polymeric materials, Journal of Materials Science 7/7 (1972) 741-746.
  • [134] A. Neubrand, J. Rodel, Gradient materials: an overview of a novel concept, Zeitschrift für Metallkunde 88/5 (1997) 358-371.
  • [135] A. Kawasaki, R. Watanabe, Concept and P/M fabrication of Functionally Gradient Materials, Ceramics International 23 (1997) 73-83.
  • [136] B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials, Materials Science and Engineering A 362/1-2 (2003) 81-106.
  • [137] L.A. Dobrzański, J. Mikuła, The structure and functional properties of PVD and CVD coated Al2O3+ZrO2 oxide tool ceramics, Journal of Materials Processing Technology 167 (2005) 438-446.
  • [138] L.A. Dobrzański, S. Skrzypek, D. Pakuła, J. Mikuła, A. Kriz, Influence of the PVD and CVD technologies on the residual macro-stresses and functional properties of the coated tool ceramics, Journal of Achievements in Materials and Manufacturing Engineering 35/2 (2009) 162-168.
  • [139] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, P. Podstawski, Functional properties of the sintered tool materials with (Ti,Al)N coating, Journal of Achievements in Materials and Manufacturing Engineering 36/2 (2009) 134-141.
  • [140] H. Kimura, K. Toda, Design and development of graded materials by pulse discharge resistance consolidation, Metal Powder Report 51/1 (1997) 34.
  • [141] Y. Miyamoto, Development of Functionally Graded Materials by HIP, Materials Science Research International 6/1 (2000) 3-8.
  • [142] I.Y. Konyashin, A technique for fabrication of coated TiCN-based cermets with functionally graded structure, International Journal of Refractory Metals & Hard Materials 19 (2001) 523-526.
  • [143] M. Bonek, L.A. Dobrzański, E. Hajduczek, A. Klimpel, Structure and properties of laser alloyed surface layers on the hot-work tool steel, Journal of Materials Processing Technology 175 (2006) 45-54.
  • [144] U. Schulz, M. Peters, F.W. Bach, G. Tegeder, Graded coatings for thermal, wear and corrosion barriers, Materials Science and Engineering A 362 (2003) 61-80.
  • [145] H. Leiste, M. Stüber, V. Schier, H. Holleck, Microstructural Characterisation of TiC-TiN Gradient Coatings Deposited by Non-Reactive Magnetron Sputtering, Materials Science Forum 308-311 (1999) 467-475.
  • [146] L.A. Dobrzański, L.W. Żukowska, J. Mikuła, K. Gołombek, D. Pakuła, M. Pancielejko, Structure and mechanical properties of gradient PVD coatings, Journal of Materials Processing Technology 201 (2008) 310-314.
  • [147] K. Lukaszkowicz, L.A. Dobrzański, Structure and mechanical properties of gradient coatings deposited by PVD technology onto the X40CrMoV5-1 steel substrate, Journal of Materials Science 43 (2008) 3400-3407.
  • [148] W. Kwaśny, M.J. Woźniak, J. Mikuła, L.A. Dobrzański, Structure, physical properties and multifractal characteristics of the PVD and CVD coatings deposition onto the Al2O3+ +TiC ceramics, International Journal of Computational Materials Science and Surface Engineering 1/1 (2007) 97-113.
  • [149] L.A. Dobrzański, D. Pakuła, A. Křiž, M. Soković, J. Kopač, Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics, Journal of Materials Processing Technology 175 (2006) 179-185.
  • [150] M. Adamiak, L.A. Dobrzański, Microstructure and selected properties of hot-work tool steel with PVD coatings after laser surface treatment, Applied Surface Science 254/15 (2008) 4552-4556.
  • [151] L.A. Dobrzański, M. Staszuk, K. Gołombek, A. Śliwa, M. Pancielejko, Structure and properties PVD and CVD coatings deposited onto edges of sintered cutting tools, Archives of Metallurgy and Materials 55/1 (2010) 187-193.
  • [152] L.A. Dobrzański, K. Lukaszkowicz, A. Zarychta, L. Cunha, Corrosion resistance of multilayer coatings deposited by PVD techniques onto the brass substrate, Journal of Materials Processing Technology 164-165 (2005) 816-821.
  • [153] L.A. Dobrzański, K. Lukaszkowicz, J. Mikuła, D. Pakuła, Structure and corrosion resistance of gradient and multilayer coatings, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 75-78.
  • [154] K. Lukaszkowicz, J. Sondor, A. Kriz, M. Pancielejko, Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Journal of Materials Science 45 (2010) 1629-1637.
  • [155] R.A. Antunes, A.C.D. Rodas, N.B. Lima, O.Z. Higa, I. Costa, Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316L austenitic stainless steel for orthopedic applications, Surface and Coatings Technology 205 (2011) 2074-2081.
  • [156] L.A. Dobrzański, K. Gołombek, J. Mikuła, D. Pakuła, Multilayer and gradient PVD coatings on the sintered tool materials, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 170-190.
  • [157] W. Kwaśny, Predicting properties of PVD and CVD coatings based on fractal quantities describing their surface, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 125-192.
  • [158] M. Soković, L.A. Dobrzański, J. Kopač, L. Kosec, Cutting properties of PVD and CVD Coated Al2O3+TiC tool ceramic, Materials Science Forum 539-543 (2007) 1159-1164.
  • [159] L.A. Dobrzański, J. Mikuła, Structure and properties of PVD and CVD coated Al2O3+TiC mixed oxide tool ceramics for dry on high speed cutting processes, Journal of Materials Processing Technology 164-165 (2005) 822-831.
  • [160] L.A. Dobrzański, J. Domagała, T. Tański, A. Klimpel, D. Janicki, Laser surface treatment of magnesium alloy with WC and TiC powders using HPDL, Journal of Achievements in Materials and Manufacturing Engineering 28/2 (2008) 179-186.
  • [161] L.A. Dobrzański, K. Labisz, M. Piec, J. Lelątko, A. Klimpel, Structure and Properties of the 32CrMoV12-28 Steel Alloyed with WC Powder using HPDL Laser, Materials Science Forum 530-531 (2006) 334-339.
  • [162] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, Journal of Materials Processing Technology 191 (2007) 321-325.
  • [163] L.A. Dobrzański, M. Bonek, E. Hajduczek, A. Klimpel, A. Lisiecki, Comparison of the structures of the hot-work tool steels laser modified surface layers, Journal of Materials Processing Technology 164-165 (2005) 1014-1024.
  • [164] L.A. Dobrzański, T. Tański, L. Čižek, Z. Brytan, Structure and properties of the magnesium casting alloys, Journal of Materials Processing Technology 192-193 (2007) 567-574.
  • [165] L.A. Dobrzański, A. Drygała, Laser processing of multicrystalline silicon for texturization of solar cells, Journal of Materials Processing Technology 191 (2007) 228-231.
  • [166] L.A. Dobrzański, A. Drygała, K. Gołombek, P. Panek, E. Bielańska, P. Zięba, Laser surface treatment of multicrystalline silicon for enhancing optical properties, Journal of Materials Processing Technology 201 (2008) 291-296.
  • [167] D. Chen, Anti-reflection (AR) coatings made by sol-gel processes: A review, Solar Energy Materials and Solar Cells 68 (2001) 313-336.
  • [168] PACVD/PECVD Plasma Assisted (Enhanced) CVD, http://www.plazma.efuturo.pl/cvd.htm, 2011.
  • [169] Y.-G. Jung, S.-C. Choi, C.-S. Oh, U.-G. Paik, Residual stress and thermal properties of zirconia/metal (nickel, stainless steel 304) functionally graded materials fabricated by hot pressing, Journal of Material Science 32 (1997) 3841-3850.
  • [170] E.M. Ruiz-Navas, R. Garciýa, E. Gordo, F.J. Velasco, Development and characterisation of high-speed steel matrix composites gradient materials, Journal of Materials Processing Technology 143-144 (2003) 769-775.
  • [171] A. Várez, B. Levenfeld, J.M. Torralba, G. Matula, L.A. Dobrzański, Sintering in different atmospheres of T15 and M2 high speed steels produced by modified metal injection moulding process, Materials Science and Engineering A 366/2 (2004) 318-324.
  • [172] P. Wróbel, Upgrading of a cast steel surface by an alloying composite layer during a casting process, PhD Thesis, Silesian University of Technology Library, Gliwice, 2004 (in Polish).
  • [173] B. Kusznir, Manufacturing technology development of alloy layers onto iron casting using the magnetic field, PhD Thesis, Silesian University of Technology Library, Gliwice, 1979.
  • [174] L.A. Dobrzański, M. Kremzer, A. Nagel, Structure and properties of ceramic preforms based on Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 7-13.
  • [175] L.M. Peng, J.W. Cao, K. Noda, K.S. Han, Mechanical properties of ceramic-metal composites by pressure infiltration of metal into porous ceramics, Materials Science and Engineering A 374 (2004) 1-9.
  • [176] L.A. Dobrzański, Descriptive metal science of non-ferrous metal alloys, Silesian University of Technology Publishing House, Gliwice, 2008 (in Polish).
  • [177] H. Kaczmarek, Acceleration effects of photochemical polymers decomposition by low-and macromolecular substances, UMK, Toruń, 1998 (in Polish).
  • [178] P. Rytlewski, M. Żenkiewicz, Effects of laser irradiation on surface properties of poly(ethylene terephthalate), Journal of Adhesion Science and Technology 24 (2010) 685-697.
  • [179] M.L Shofner, F.J. Rodríguez-Macías, R. Vaidyanathan, E.V. Barrera, Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication, Composites Part A: Applied Science and Manufacturing 34/12 (2003) 1207-1217.
  • [180] C. Li, E.T. Thostenson, T.W. Chou, Sensors and actuators based on carbon nanotubes and their composites: A review, Composites Science and Technology 68 (2008) 1227-1249.
  • [181] Q. Cao, J.A. Rogers, Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects, Advanced Materials 21/1 (2009) 29-53.
  • [182] D.R. Kauffman, D.C. Sorescu, D.P. Schofield, B.L. Allen, K.D. Jordan, A. Star, Understanding the Sensor Response of Metal-Decorated Carbon Nanotubes, Nano Letters 10 (2010) 958-963.
  • [183] N. Sinha, J. Ma, J.T.W. Yeow, Carbon Nanotube-Based Sensors, Journal of Nanoscience and Nanotechnology 6 (2006) 573-590.
  • [184] Q. Zhao, H.D. Wagner, Raman spectroscopy of carbon-nanotube-based composites, Philosophical Transactions of the Royal Society of London A 362 (2004) 2407-2424.
  • [185] P. Sureeyatanapas, R.J. Young, SWNT composite coatings as a strain sensor on glass fibres in model epoxy composites, Composites Science and Technology 69/10 (2009) 1547-1552.
  • [186] K. Rege, N.R. Raravikar, D.-Y. Kim, L.S. Schadler, P.M. Ajayan, J.S. Dordick, Enzyme- Polymer-Single Walled Carbon Nanotube Composites as Biocatalytic Films, Nano Letters 3/6 (2003) 829-832.
  • [187] Q.C. Shi, T.Z. Peng, A novel cholesterol oxidase biosensor based on Pt-nanoparticle/carbon nanotube modified electrode, Chinese Chemical Letters 16/8 (2005) 1081-1084.
  • [188] H.F Cui, J.S. Ye, X. Liu, W.D. Zhang, F.S. Sheu, Pt-Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation, Nanotechnology 17 (2006) 2334-2339.
  • [189] H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Composites of carbon nanotubes and conjugated polymers for photovoltaic devices, Advanced Materials 11/15 (1999) 1281-1285.
  • [190] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science 287/ 5453 (2000) 622-625.
  • [191] R. Sarder, A.M. Funston, P. Mulvaney, R.W. Murray, Gold Nanoparticles: Past, Present, and Future, Langmuir 25/24 (2009) 13840-13851.
  • [192] A. Star, V. Joshi, S. Skarupo, D. Thomas, J.C.P Gabriel’ Gas sensor array based on metal-decorated carbon nanotubes, The Journal of Physical Chemistry B 110/42 (2006) 21014-21020.
  • [193] H. Han, S.H. Choi, T.Y. Lee, J. Yoo, Ch. Park, T. Jung, S. Yu, W. Yi, I.T. Han, J.M. Kim, Growth characteristics of carbon nanotubes using platinum catalyst by plasma enhanced chemical vapor deposition, Diamond and Related Materials 12 (2003) 878-883.
  • [194] K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, Progress in the synthesis of carbon nanotube - and nanofiber - supported Pt electrocatalysts for PEM fuel cell catalysis, Journal of Applied Electrochemistry 36 (2006) 507-522.
  • [195] L.A. Dobrzański, M. Pawlyta, A. Krztoń, B. Liszka, K. Labisz, Synthesis and characterization of carbon nanotubes decorated with platinum nanoparticles, Journal of Achievements in Materials and Manufacturing Engineering 39/2 (2010) 184-189.
  • [196] L.A. Dobrzański, M. Pawlyta, A. Krztoń, B. Liszka, C.W. Tai, W. Kwaśny, Synthesis and characterization of carbon nanotubes decorated with gold nanoparticles, Acta Physica Polonica A 118 (2010) 483-486.
  • [197] Q. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor, Electrochimica Acta 48/5 (2003) 575-580.
  • [198] K. Hedicke-Hochstotter, G.T. Lick, V. Altstadt, Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite, Composites Science and Technology 69/3-4 (2009) 330-334.
  • [199] A. Govindaraj, B.C. Satishkumar, M. Nath, C.N.R. Rao, Metal Nanowires and Intercalated Metal Layers in SingleWalled Carbon Nanotube Bundles, Chemistry of Materials 12/1 (2000) 202-205.
  • [200] R.C. Savaskan, S. Bhattacharya, L.N. van Wassenhove, Closed Loop Supply Chain Models with Product Remanufacturing, Management Science 50/2 (2004) 239-252.
  • [201] National Foresight Programme Polska 2020, http://foresight.polska2020.pl/cms/en
  • [202] Technology Foresight. Organisation and methods. Manual, Vol. 1, Published by United Nations Industrial Development Organization and Polish Agency for Enterprise Development, 2007 (in Polish).
  • [203] L.A. Costanzo, R.B. Mackay, Handbook of Research on Strategy and Foresight, Edward Elgar Publishing, 2009.
  • [204] K. Borodako, Foresight in strategic management, Published by C.H. Beck, Warsaw, 2009 (in Polish).
  • [205] D. Loveridge, Foresight: The Art and Science of Anticipating the Future, Taylor & Francis, NY, 2009.
  • [206] J. McBrewster, F.P. Miller, A.F. Vandome, in: Futurology: Delphi method, Causal layered analysis, Patrick Dixon, Scenario planning, Future history, Failure mode and effects analysis, Social network, systems engineering, reference class forecasting, Forecasting, Prediction, R.A. Slauhgter, E. Masini, J. Dator, Ch. Jones, O. Markley (Eds.), Alphascript Publishing, 2009.
  • [207] L. Georghiou, J.C. Harper, M. Keenan, I. Miles, R. Popper, The handbook of technology foresight. Concepts and Practice, Edward Elgar Publishing Ltd., UK, 2008.
  • [208] N. Gerdsri, R.S. Vatananan, S. Dansamasatid, Dealing with the dynamics of technology roadmapping implementation: A case study, Technical Forecasting & Social Change 76 (2009) 50-60.
  • [209] Y. Yasunaga, M. Watanabe, M. Korenaga, Application of technology roadmaps to govermental innovation Policy for promoting technology convergence, Technical Forecasting and Social Change 76 (2009) 61-79.
  • [210] R. Phaal, G. Muller, An architectural framework for road-mapping: Towards visual strategy, Technological Forecasting & Social Change 76 (2009) 39-49.
  • [211] M. Lindgren, H. Bandhold, Scenario Planning - Revised and Updated Edition: The Link Between Future and Strategy, Palgrave Macmillan, Second Edition, 2009.
  • [212] R. Bradfield, G. Wright, G. Burt, G. Cairns, K. van der Heijden, The origins and evolution of scenario techniques in long range business planning, Futures 37 (2005) 795-812.
  • [213] P.W.F. van Notten, J. Rotmans, M.B.A. van Asselt, D.S. Rotman, An updated scenario typology, Futures 35 (2003) 423-443.
  • [214] P. Heugens, J. van Oesterhout, To boldly go where no man has gone before: integrating cognitive and physical features in scenario studies, Futures 33 (2001) 861-872.
  • [215] A. Martelli, Scenario building and planning: state of arts and prospects of evolution, Futures Research Quarterly Summer (2001) 55-70.
  • [216] K. Czaplicka, N. Howaniec, A. Smoliński, Creation of scenarios for technology foresight. Literature review, www.polska2020.pl/cms/pl/publications (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f01c0372-d599-4fac-af4a-4af2d48aeaf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.