Tytuł artykułu
Identyfikatory
Warianty tytułu
Ocena zmian konstrukcyjnych betonowych zbiorników do przechowywania gnojowicy zwierzęcej
Języki publikacji
Abstrakty
In connection with the applied technique of acidification slurry in order to reduce the emission of ammonia, the anticipated research problem became the issue of durability of concrete tanks used for storing liquid manure. The aim of study was to investigate the microstructural changes and corrosion behavior of steel reinforced concrete, especially in aggressive and corrosive environments like animal slurry. During experiment, the samples are periodically inspected to determine any changes occurring as a result of the corrosion process. Strength tests were carried out in the intervals of: 28 days after forming samples, 6, 12 and 21 months (with the exception of non-acidified slurry). ANOVA analysis was used in order to compare physical parameters according to the concrete mix. After strength tests concrete samples were taken for microscopic examination, to find and evaluate any changes in the concrete structure. Chemical composition of tested samples show the lack of crystals calcium hydroxide and residual cement and a clear start to the formation of ettringite crystals. Ettringite was quantified by using both differential scanning calorimetry and X-ray diffraction; the resulting volume changes in the samples were measured. If we take into consideration two concrete mixtures C 25/30 and C 30/37, the second one is more resistant to activity of acidified slurry, what is presented in crystals formation. The structure of crystals of concrete C 25/30 are bigger compare to crystals of concrete C 30/37. Concrete type C 30/37 after 21 month of storage in acidified slurry meet comprehensive strength of concrete type C 45/55. The final conclusion of the study: the acidified slurry did not cause a significant reduction in the strength of the C30/37 concrete specimens compared to the non-acidified slurry during the two-year storage period. As a result of macroscopic evaluation, no corrosion changes were observed for the 17 mm lagging when the acidified slurry was stored. The above results allow us to conclude that the durability of reinforced concrete tanks intended for storing slurry with sulfuric acid addition will not decrease, and as a result, there will be no need to increase the production of construction cement for agricultural purposes. Thus, there will be no increase in global CO2 emissions.
W związku ze stosowaną techniką zakwaszania gnojowicy w celu ograniczenia emisji amoniaku, przewidywanym problemem badawczym stała się kwestia trwałości zbiorników betonowych wykorzystywanych do przechowywania gnojowicy. Przedmiotem opracowania było zbadanie zmian konstrukcyjnych i odporności na korozję betonu zbrojonego stalą w zbiornikach do przechowywania gnojowicy zwierzęcej. Próbki były okresowo kontrolowane w celu zbadania zmian zachodzących w wyniku procesu korozji. Badania wytrzymałościowe przeprowadzono po 28 dniach od uformowaniu próbek oraz po 6, 12 i 21 miesiącach. Analizę ANOVA zastosowano w celu oceny parametrów fizycznych w zależności od wykorzystanego betonu C30/37 lub C45/55. Podczas badań nie zaobserwowano znaczącego wzrostu porowatości badanych próbek w porównaniu z próbkami referencyjnymi i zjawisk powodujących rozległą degradację struktury betonu. Zaobserwowano, że gdy porowatość betonu wzrasta, odporność na korozję maleje. Na podstawie badań można wnioskować, że podczas 2-letniego okresu przechowywania zakwaszona gnojowica nie spowodowała znaczącego zmniejszenia wytrzymałości próbek betonu C30/37 w porównaniu z niezakwaszoną gnojowicą. Trwałość zbiorników żelbetowych przeznaczonych do magazynowania gnojowicy z dodatkiem kwasu siarkowego nie ulegnie zmniejszeniu, a co za tym idzie, nie będzie potrzeby zwiększania produkcji cementu budowlanego do celów rolniczych o wyższych parametrach wytrzymałościowych C45/55. Tym samym nie nastąpi wzrost globalnej emisji CO2.
Wydawca
Czasopismo
Rocznik
Tom
Strony
6--15
Opis fizyczny
BIbliogr. 43 poz., fig., tab.
Twórcy
autor
- Institute of Technology and Life Sciences National Research Institute, Warsaw
autor
- Institute of Technology and Life Sciences National Research Institute, Warsaw
autor
- Institute of Technology and Life Sciences National Research Institute, Warsaw
autor
- Institute of Wood Science and Furniture, Warsaw UNiversity of Life Sciences in Warsaw, Warsaw
autor
- Institute of Wood Science and Furniture, Warsaw UNiversity of Life Sciences in Warsaw, Warsaw
autor
- Institute of Technology and Life Sciences National Research Institute, Warsaw
Bibliografia
- [1] Assaad V.F., Jofriet J.C., Hayward G.L.: Sulphate and sulphide corrosion in livestock buildings. Part I. Concrete deterioration. Biosyst. Eng. 99 (2008) 372–381. DOI: 10.1016/j.biosystemseng.2007.11.002.
- [2] Maraveas C.: Durability issues and corrosion of structural materials and systems in farm environment. Appl. Sci. 10 (2020) 990. https:// doi.org/10.3390/app10030990.
- [3] De Belie N., Lenehan J.J, Braam C.R., Svennerstedt B., Richardson M., Sonck B.: Durability of building materials and components in the agricultural environment. Part III. Concrete structures. J. Agric. Eng. Res. 76 (1) (2000) 3–16. DOI: 10.1006/jaer.1999.0520.
- [4] Barbhuiya S., Kumala D.: Behaviour of a sustainable concrete in acidic environment. Sustainability 2017, 9, 1556. https://doi.org/10.3390/ su9091556
- [5] Roman K., Borek K., Mazur K.: Comparison of cracks criteria MPS, S-Criterion, T-Criterion using a computer program to obtain the angle of fracture propagation. Inż. Mat. 6 (40) (2019) 32–35. DOI: 10.15199/28.2019.6.5.
- [6] PN-EN 1992-1-1:2008. Projektowanie konstrukcji z betonu. Cz. 1-1. Reguły ogólne i reguły dla budynków.
- [7] Sanchez E., Moragues A., Massana J., Antón R., López J., Garcimartín M.A.: Strength and porosity evolution of two cement mortar submerged in pig slurry. Proc. Int. Conf. Agric. Eng. (2008). http://oa.upm.es/3574/, accessed 12.05.2023 r.
- [8] J.Y. Hu, S.S. Zhang, E. Chen, W.G. Li: A review on corrosion detection and protection of existing reinforced concrete (RC) structures. Constr. Build. Mater. 325 (2022).
- [9] Janković K., Bojović D., Stojanović M., Lončar L.: Resistance of CEM III/B based materials to acid attack. Build. Mater. Struct. 57 (2) (2014) 29–37. DOI: 10.5937/grmk1402029J.
- [10] Wierzchowski P.S., Dobrzyński J., Mazur, K., Kierończyk M., Wardal W.J., Sakowski T., Barszczewski J.: Chemical properties and bacterial community reaction to acidified cattle slurry fertilization in soil from maize cultivation. Agronomy 11 (2021) 601. https://doi. org/10.3390/agronomy11030601.
- [11] Lorek A.: Procesy zachodzące w cementach wiertniczych pod wpływem sekwestracji CO2 – przegląd literatury. Nafta-Gaz 5 (2015) 301–307. http://archiwum.inig.pl/INST/nafta-gaz/nafta-gaz/Nafta- -Gaz-2015-05-03.pdf, accessed 10.05.2023 r.
- [12] Łącki W., Grabiec A.: Gnojowica – środowisko agresywne dla betonu. Budownictwo Rolnicze 1 (1981).
- [13] Rodhe L., Kalinowski M., Pizzul, L., Ascue J., Tersmeden M.: Slurry acidification. Micro-structural analysis of concrete after exposure to acidified and non-acidified slurry (2019). http://www.diva-portal.org/ smash/get/diva2:1307307/FULLTEXT01.pdf, accessed 07.08.2023 r.
- [14] Wardal W., Kieronczyk M., Barwicki J., Borek K., Mazur K., Konieczna A.: Uwarunkowania prawne stosowania dodatku kwasu siarkowego do gnojowicy w celu zmniejszenia strat azotu. Przem. Chem. 8 (98) (2019) 1179–1183.
- [15] Wardal W.J., Mazur K.E., Roman K., Roman M., Majchrzak M.: Assessment of cumulative energy needs for chosen technologies of cattle feeding in barns with conventional (CFS) and automated feeding systems (AFS). Energies 14 (2021) 8584. https://doi.org/10.3390/ en14248584.
- [16] Trägårdh J., Kalinowski M.: Investigation of the conditions for a thaumasite form of sulfate attack in SCC with limestone filler. Proc. 3rd Inter. RILEM Symp. (2003) 33.
- [17] Kempa C.: Warunki techniczne wykonania i odbioru zbiorników betonowych oczyszczalni wody i ścieków. Instalator Polski (1998).
- [18] Anglani G., Van Mullem T., Zhu X., Wang J., Antonaci P., De Belie N., Tulliani J.-M., Van Tittelboom K.: Sealing efficiency of cement-based materials containing extruded cementitious capsules. Construct. Build. Mater. 252 (2020). DOI: 10.1016/j.conbuildmat.2020.119039.
- [19] Parande A.K., Ramsamy P.L., Ethirajan S., Rao C.R.K., Palanisamy N.: Deterioration of reinforced concrete in sewer environments. Proc. Inst. Civil Eng. – Municipal Eng. 159 (2006) 11–20.
- [20] De Belie N., Monteny J., Vincke E.: The effect of chemical and biogenic sulfuric acid on the different types of concrete for sewer pipes. Proc. 4th Int. Symposium for Concrete for a Sustainable Agriculture. Agro-, Aqua- and Community Applications, Ghent, Belgium (2002) 231–239. https://biblio.ugent.be/publication/153491, accessed 02.08.2023 r.
- [21] Węglewski W.: Modelowanie zniszczenia betonu wywołanego korozją siarczanową. Institute of Fundamental Technological Research Polish Academy of Sciences. Warsaw (2008). https://www.ippt.pan.pl/_download/ doktoraty/weglewski_doktorat.pdf, accessed 25.05.2023 r.
- [22] Nair S., Little D.: Water as the key to expansion of ettringite in cementitious materials. Transportation research record. J. Transport. Res. Board 2104 (1) (2009) 55–62. DOI: 10.3141/2104-06.
- [23] Suchorab Z., Barnat-Hunek D., Franus M., Łagód G.: Mechanical and physical properties of hydrophobized lightweight aggregate concrete with sewage sludge. Material 9 (5) (2016) 317. DOI: 10.3390/ma9050317.
- [24] Mahmoodian M., Alani A.M.: Effect of temperature and acidity of sulphuric acid on concrete properties. J. Mater. Civil Eng. 10 (29) (2017).
- [25] Joorabchian S.M.: Durability of concrete exposed to sulfuric acid attack. Toronto Metropolitan University. Thesis (2010). https://doi. org/10.32920/ryerson.14654622.v1.
- [26] Min H., Song Z.: Investigation on the sulfuric acid corrosion mechanism for concrete in soaking environment. Adv. Mater. Sci. Eng. (2018). https://doi.org/10.1155/2018/3258123.
- [27] Ouyang C., Nanni A., Chang W.F.: Internal and external sources of sulfate ions in Portland cement mortar: two types of chemical attack. Cem. Concr. Res. 18 (1988) 699–709. DOI: 10.1016/0008-8846(88)90092-0.
- [28] Skalny J., Marchand J., Odler I.: Sulfate attack on concrete. Modern Concr. Technol. 10 (2002) 217.
- [29] Nijland T.G., Larbi J.A.: Microscopic examination of deteriorated concrete. In Non-destructive evaluation of reinforced concrete structures (ed. Maierhofer Ch., Reinhardt H.-W., Dobmann G.). Woodhead Publishing Series in Civil and Structural Engineering 1 (2010) 137–179. https://doi. org/10.1533/9781845699536.2.137.
- [30] Commission Implementing Decision (EU) 2017/302 of 15 February 2017 establishing Best Available Techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the intensive rearing of poultry or pigs. https://eur-lex.europa. eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2017.043.01.0231.01. ENG&toc=OJ:L:2017:043:FULL.
- [31] EEA Report No 5/2020 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). https://www.eea.europa.eu/ publications/european-union-emission-inventory-report-1990-2018.
- [32] Andrew R.M.: Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 11 (2019) 1675–1710. https://doi. org/10.5194/essd-11-1675-2019.
- [33] Teh S.H., Wiedmann T., Castel, A., de Burgh J.: Hybrid life cycle assessment of greenhouse gas emissions from cement, concreto and geopolymer concrete in Australia. J. Clean. Prod. 152 (2017) 312–320. https://doi.org/10.1016/j.jclepro.2017.03.122.
- [34] Watari T., Cao Z., Hata S. et al.: Efficient use of cement and concrete to reduce reliance on supply-side technologies for net-zero emissions. Nat. Commun. 13 (2022) 4158. https://doi.org/10.1038/s41467-022- 31806-2.
- [35] Griffiths S., Sovacool B.K., Furszyfer Del Rio D.D., Foley A.M., Bazilian M.D., Kim J., Uratani J.M.: Decarbonizing the cement and concrete industry. A systematic review of socio-technical systems, technological innovations, and policy options. Renew. Sustain. Energy Rev. 180 (2023) 113291. https://doi.org/10.1016/j.rser.2023.113291.
- [36] Gibbs M.J., Soyka P., Conneely D.: CO2 emissions from cement production. good practice guidance and uncertainty management in national greenhouse gas inventories. The Intergovernmental Panel on Climate Change (IPCC) (2000). https://www.ipcc-nggip.iges.or.jp/public/gp/ bgp/3_1_Cement_Production.pdf.
- [37] Portland Cement Association. https://www.cement.org/docs/default- -source/th-paving-pdfs/sustainability/carbon-foot-print.pdf, accessed 25.05.2023 r.
- [38] Wałach D.: Analysis of factors affecting the environmental impact of concrete structures. Sustainability 13 (2021) 204. https://doi. org/10.3390/su13010204.
- [39] PN-EN 12620+A1:2010. Kruszywa do betonu.
- [40] PN-EN 12350-1:2019-07. Badania mieszanki betonowej. Cz. 1. Pobieranie próbek i podstawowe wyposażenie.
- [41] PN-EN 12390-2:2019-07. Badania betonu. Cz. 2. Wykonywanie i pielęgnacja próbek do badań wytrzymałościowych.
- [42] Zhou S., Zhang S., Shen J., Guo W.: Effect of cattle manure ash’s particle size on compression strength of concrete. Case Stud. Constr. Mater. 10 (2019). DOI: 10.1016/j.cscm.2018.e00215.
- [43] Fangueiro D., Hjorth M., F Gioelli: Acidification of animal slurry. A review. J. Environ. Manag. 149 (2015) 46–56.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4ddad798-29dc-4558-9c91-fb5473f1d319
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.