PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy Harvesting –New Green Energy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy Harvesting is the technique of capturing ambient energy in physical systems which often dissipates into a less usable form to the environment and converting it into usable electric power. Energy harvesting is beneficial in powering the electronics where there's a need to replace or monitor conventional power sources, making them a more expensive option. The use of energy harvesters eliminates the need to run wires or make frequent visits to replace batteries, thus contributing to green energy savings. This short letter reports the 3new designed energy harvesting systems based on the electromagnetic and piezoelectric effect from two Universities, i.e. Lublin University of Technology (Poland) and University College Dublin (Republic of Ireland) binding the cooperation between universities in the EH Dialog project. The proposed systems can be used as a power supply for low-energy devices or in diagnostics.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • University College Dublin, School of Mechanical and Materials Engineering, Belfield, Dublin 4, Rep.of Ireland
Bibliografia
  • [1] H.Q. Nguyen, H.Q. Thanh and T. Ngo “Review onthe transformation of biomechanical energy to green energy using triboelectric and piezoelectric based smart materials”. Journal of Cleaner Production vol. 371, 133702, 2022.
  • [2] S. Fang, S. Zhou, D. Yurchenko, T. Yao. and W.H. Liao “Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review”. Mechanical Systems and Signal Processing vol. 166, 108419, 2022.
  • [3] A. Georgiadis, A. Collado and M. M. Tentzeris. Energy Harvesting: Technologies, Systems, and Challenges. EuMA High Frequency Technologies Series. Cambridge University Press, 2021.
  • [4] T.J. Kaźmierski and S. Beeby. Energy harvesting systems: Principles, modeling and applica-tions, pp. 1–163, 2011.
  • [5]N. Elvin and A. Erturk, “Advances in energy harvesting methods, ” Advances in Energy Harvesting Methods, pp. 1-455, 2013.
  • [6] S. Priya and D.J. Inman. Energy harvesting technologies. 2009, pp. 1–517
  • [7] N. Zhou, Z. Hou, Y. Zhang, J. Cao and C. Bowen “Enhanced swing electromagnetic energy harvesting from human motion”. Energy vol. 228, 120591, 2021.
  • [8] C.H. He, T.S. Amer, D. Tian, A.F., Aboila and A.A. Galal “Controlling the kinematics of a spring-pendulum system using an energy harvesting device”. Journal of Low Frequency Noise Vibration and Active Control vol. 41, no. 3, pp. 1234-1257, 2022.
  • [9] L. Zhang, F. Zhang, Z. Qin, Q. Han, T. Wang and F. Chu “Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring”. Energy vol. 238, 121770, 2022.
  • [10] H. Zhang, W. Sui, C. Yang, L. Zhang, R. Song and J. Wang “An asymmetric magnetic-coupled bending-torsion piezoelectric energy harvester: Modeling and experimental investigation”. Smart Materials and Structures vol. 31 no. 1, 015037, 2022.
  • [11] X. Rui, Y. Zhang, Z. Zeng, G. Yue, X. Huang and J. Li “Design and analysis of a broadband three-beam impact piezoelectric energy harvester for low-frequency rotational motion”. Mechanical Systems and Signal Processing vol. 149, 107307, 2021.
  • [12] R.M. Sarker, M.H. Saad, J.L. Olazagoitia and J. Vinolas “Review of power converter impact of electromagnetic energy harvesting circuits and devices for autonomous sensor applications”. Electronics vol. 10, no. 9, 1108, 2021.
  • [13] Z. Yang and J.W. Zu“Enhanced buckled-beam piezoelectric energy harvesting using midpoint magnetic force”. Applied Physics Letters vol. 103, no. 4, 041905, 2013.
  • [14] X. Ren, H. Fan, C. Wang, J. Ma, S. Lei, Y. Zhao, H. Li and N. Zhao „Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy”. Nano Energy vol. 35, pp. 233-241, 2017.
  • [15] S. Guerin “Ab-Initio Predictions of the Energy Harvesting Performance of L-Arginine and L-Valine Single Crystals”. Frontiers inMechanical Engineering vol. 7, 738446, 2021.
  • [16] S. Guerin “Getting the Lead Out: Biomolecular Crystals as Low-Cost, High-Performance Piezoelectric Components”. Accounts of Materials Research vol. 3, no. 8, pp. 782-784, 2022.
  • [17]B. Ambrożkiewicz, G. Litak and P. Wolszczak, “Modelling of electromagnetic energy harvester with rotational pendulum using mechanical vibrations to scavenge electrical energy, ” Applied Sciences (Switzerland), vol. 10, no. 2, pp. 1-14, 2020.
  • 18] F. Okosun, S. Guerin, M. Celikin and V. Pakrashi “Flexible amino acid-based energy harvesting for structural health mon-itoring of water pipes”. In: Cell Reports Physical Science vol.2, no. 5, 2021.
  • [19]S. Almohammed, A. Thampi, A. Bazaid, F. Zhang, S. Moreno, K. Keogh, M. Minary-Jolandan, J.H. Rice and B.J. Rodriguez, “Energy harvesting with peptide nanotube-graphene oxide flexible substrates prepared with electric field and wettability assisted self-assembly,” Journal of Applied Physics, vol. 128, 115101, 2020.
  • [20] Marwan, Norbert, et al. "Recurrence plots for the analysis of complex systems." Physics reports 438.5-6 (2007): 237-329.
  • [21] Webber, Charles L., and Norbert Marwan. "Recurrence quantification analysis." Theory and Best Practices (2015)
  • [22]P. Cahill, N. A. N. Nuallin, N. Jackson, A. Mathewson, R. Karoumi and V. Pakrashi, “Energy harvesting from train-induced response in bridges, ” Journal of Bridge Engineering, vol. 19, no. 9, 2014.
  • [23] S. Mishra, U. Lakshmi, N. S. Kumar and M. Smita “Advances in PiezoelectricPolymer Composites for Energy Harvesting Applications: A Systematic Review”. In: Macromolecular Materials and Engineering vol. 304, no. 1, 2019.
  • [24] T.D. Ponnimbaduge Perera et al. “Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges”. In: IEEE Communications Surveys and Tutorials vol.20, no. 1, 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d7bda964-ff9f-4872-b92f-2be2c19c37ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.