PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zeroing of state variables in fractional descriptor electrical circuits by state-feedbacks

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of zeroing of the state variables in fractional descriptor electrical circuits by state-feedbacks is formulated and solved. Necessary and sufficient conditions for the existence of gain matrices such that the state variables of closed-loop systems are zero for time greater zero are established. The procedure of choice of the gain matrices is demonstrated on simple descriptor electrical circuits with regular pencils.
Słowa kluczowe
Rocznik
Strony
321--333
Opis fizyczny
Bibliogr. 39 poz., wz.
Twórcy
autor
  • Faculty of Electrical Engineering, Bialystok University of Technology Wiejska 45D, 15-351 Białystok
Bibliografia
  • [1] Dodig M., Stosic M., Singular systems state feedbacks problem. Linear Algebra and its Applications 431(8): 1267-1292 (2009).
  • [2] Dai L., Singular control systems. Lecture Notes in Control and Inform. Sci. 118, Springer-Verlag, Berlin (1989).
  • [3] Fahmy M.M., O'Reill J., Matrix pencil of closed-loop descriptor systems: infinite-eigenvalues assignment. Int. J. Control 49(4): 1421-1431 (1989).
  • [4] Gantmacher F.R., The Theory of Matrices. Vol. I, II. K.A. Hirsch (transl.), Chelsea Publishing Co., New York (1959).
  • [5] Guang-Ren Duan, Analysis and Design of Descriptor Linear Systems. Springer (2010).
  • [6] Kaczorek T., Elimination of finite eigenvalues of strongly singular systems by feedbacks in linear systems. Int. Conf. Mathematical Modelling as Means of Power Consumption, 18-23.06, Lwow, pp. 73-77 (2001).
  • [7] Kaczorek T., Infinite eigenvalue assignment by an output feedback for singular systems. Int. J. Appl. Math. Comput. Sci. 14(1): 19-23 (2004).
  • [8] Kaczorek T., Linear Control Systems: Analysis of Multivariable Systems. Research Studies Press and J. Wiley & Sons, New York (1992).
  • [9] Kaczorek T., Polynomial and Rational Matrices. Applications in Dynamical Systems Theory, Springer-Verlag, London (2007).
  • [10] Kaczorek T., Positivity of descriptor linear systems with regular pencils. Poznan University Technology Academic Journals, Electrical Engineering 69: 9-22 (2012).
  • [11] Kaczorek T., Realization problem for singular positive continuous-time systems with delays. Control and Cybernetics 36(1): 47-57 (2007).
  • [12] Kaczorek T., Selected Problems of Fractional Systems Theory. Springer-Verlag, Berlin (2011).
  • [13] Kaczorek T., Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archives of Control Sciences 21(3): 287-298 (2011).
  • [14] Kaczorek T., Positivity and reachability of fractional electrical circuits, Acta Mechanica et Automatica 5(2): 42-51 (2011).
  • [15] Kaczorek T., Reduction and decomposition of singular fractional discrete-time linear systems. Acta Mechanica et Automatica 5(4): 62-66 (2011).
  • [16] Kaczorek T., Singular fractional discrete-time linear systems. Control and Cybernetics 40(3): 753-761 (2011).
  • [17] Kaczorek T., Singular fractional linear systems and electrical circuits. Int. J. Appl. Math. Comput. Sci. 21(2): 379-384 (2011).
  • [18] Kaczorek, T., Fractional positive continuous-time linear systems and their reachablity. Int. J. Appl. Math. Comput. Sci. 18(2): 223-228 (2008).
  • [19] Kaczorek T., Positive stable descriptor continuous-discrete 2D linear systems. Electrical Review 88(12a): 137-142 (2012).
  • [20] Kaczorek T., Reachablity and controllability to zero of cone fractional linear systems. Archives of Control Sciences 17(4): 357-367 (2007).
  • [21] Kaczorek T., Zeroing of state variables in descriptor linear electrical circuits by state-feedbacks. Electrical Review 89(10): 200-203 (2013).
  • [22] Kaczorek T., Infiitne eigenvalue assignment by output-feedbacks for singular systems. Proc. of Silesien Technical University pp. 64-71 (2004).
  • [23] Kucera V., Zagalak P., Fundamental theorem of state feedback for singular systems. Automatica 24(5): 653-658 (1988).
  • [24] Luenberger D.G., Time-invariant descriptor systems, Automatica 14(5): 473-480 (1978).
  • [25] Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Willey, New York (1993).
  • [26] Nashimoto K., Fractional Calculus. Descartes Press, Koriama (1984).
  • [27] Oldham K.B., Spanier J., The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. Academic Press, New York (1974).
  • [28] Ortigueira M.D., Fractional discrete-time systems. Proc. of the IEEE ICASSP-97, Munich, Germany 3, pp. 2241-2244 (1997).
  • [29] Ostalczyk P., The non-integer difference of the discrete-time function and its application to the control system synthesis, Int. J. Systems Science 31(15): 1551-1561 (2000).
  • [30] Ostalczyk P., Fractional-order backward difference equivalent forms. Part I - Horners Form. Procc. of 1st IFAC Workshop on Fractional Differentiation and its Applications FDA'04, Ensierb, Bordeaux, France, pp. 342-347 (2004).
  • [31] Ostalczyk P., Fractional-order backward difference equivalent forms Part II - Polynomial Form. Procc. of 1st IFAC Workshop on Fractional Differentiation and its Applications FDA'04, Ensierb, Bordeaux, France, pp. 348-353 (2004).
  • [32] Oustaloup A., La commande CRONE. Hermés, Paris (1991).
  • [33] Oustaloup A., La dérivation non entière: théorie, synthèse et applications. Hermés, Paris (1995).
  • [34] Podlubny I., Fractional Differential Equations. Academic Press, San Diego (1999).
  • [35] Samko S.G., Kilbas A.A., Marichev O.I., Fractional integrals and derivatives: Theory and applications. Gordon and Breach Science Publishers (1993).
  • [36] Sierociuk D., Dzielinski A., Fractional Kalman filter algorithm for the states parameters and order of fractional system estimation, Int. J. Appl. Math. Comput. Sci. 16(1): 129-140 (2006).
  • [37] Vinagre B.M., Monje C.A., Calderón A.J., Fractional order systems and fractional order control actions. Lecture 3 IEEE CDC’02 TW#2: Fractional calculus Applications in Automatic Control and Robotics (2002).
  • [38] Vinagre B.M., Feliu V., Modeling and control of dynamic systems using fractional calculus: Application to electrochemical processes and flexible structures. In Proc. 41st IEEE Conf. Decision and Control 1: 214-239 (2002).
  • [39] Van Dooren P., The computation of Kronecker's canonical form of a singular pencil. Linear Algebra and Its Applications 27: 103-140 (1979).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4f6dbdc-34d4-4f89-ad58-a71a5f903c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.