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Abstract: The problem of zeroing of the state variables in fractional descriptor electrical 
circuits by state-feedbacks is formulated and solved. Necessary and sufficient conditions 
for the existence of gain matrices such that the state variables of closed-loop systems are 
zero for time greater zero are established. The procedure of choice of the gain matrices is 
demonstrated on simple descriptor electrical circuits with regular pencils. 
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1. Introduction 
 
 Descriptor linear systems with regular pencils have been considered in many papers and 
books [1-5, 7-9, 24, 39]. The eigenvalues and invariants assignment by state and output 
feedbacks have been investigated in [6-7, 23] and the realization problem for singular positive 
continuous-time systems with delays in [11]. The computation of Kronecker's canonical form 
of a singular pencil has been analyzed in [39]. Luenberger in [24] has proposed the shuffle 
algorithm to analysis of the singular linear systems. A method for the checking of positivity 
of descriptor linear systems by the use of the shuffle algorithm has been proposed in [13]. 
The positivity and reachability of fractional electrical circuits have been addressed in [10, 14] 
and descriptor (singular) fractional linear systems and electrical circuits in [17]. Modified 
version of the shuffle algorithm has been proposed for the reduction of the singular fractional 
system into dynamic and static parts in [15]. The descriptor fractional discrete-time linear 
systems have been investigated in [16]. 
 The mathematical fundamentals of fractional calculus are given in the monographs [25-28, 
32-35]. The fractional order controllers have been developed in [32, 33]. Theory of fractional 
discrete-time linear systems has been addressed in [28]. A generalization of the Kalman filter 
for fractional order systems has been proposed in [36]. Reachability and controllability to zero 
of positive and cone fractional linear systems have been considered in [12, 18, 20]. Some 
other applications of the fractional calculus can be found in [29-31, 37, 38].  
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 The zeroing of the state variables in descriptor electrical circuits by state feedbacks has 
been formulated and solved in [21]. 
 In this paper the problem of zeroing of the state variables in fractional descriptor electrical 
circuits by state-feedbacks will be formulated and solved. The paper is organized as follows. 
In Section 2 the fractional descriptor linear electrical circuits are presented. The zeroing 
problem is formulated and solved in section 3 where the necessary and sufficient conditions 
for the existence of solution to the problem are established. Concluding remarks are given in 
section 4. 
 The following notation will be used: U – the set of real numbers, UnHm – the set of nHm 
real matrices, mn×

+ℜ  – the set of nHm matrices with nonnegative entries and 1×
++ ℜ=ℜ nn ,  

In – the nHm identity.  
 
 
 
 

2. Descriptor linear electrical circuits 
 
 The following Caputo definition of the fractional derivative will be used [12, 27, 34] 
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where α 0 U is the order of fractional derivative and 
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is the gamma function. 
 Consider the continuous-time fractional linear system described by the state Equation [12] 
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where α is the fractional order, x = x(t) 0 Un, u = u(t) 0 Um are the state and input vectors, 
respectively and E, A 0 UnHm, B 0 UnHm. 
 It is assumed that det E = 0, rankB = m and the pencil is regular, i.e. 

  det [Es – A] … 0 for some s 0 C (the field of complex numbers). (2.3) 

It is well-known [12, 17] that for example the electrical circuits with resistors, superconden-
sators and voltage sources can be described by the Equation (2.2). 

 Example 2.1. Consider the fractional electrical circuit shown on Figure 2.1 with given 
resistance R, capacitances C1, C2, C3 and source voltages e1 and e2. 
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Fig. 2.1. Electrical circuit of Example 2.1. 

 
 
 Using Kirchhoff’s laws, for the electrical circuit we can write the equations 
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The Equations (2.4) can be written in the form 
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In this case we have 
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Note that the matrix E is singular (det E = 0) but the pencil 
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is regular. Therefore, the electrical circuit is a fractional descriptor linear system with regular 
pencil. 
 In general case we have the following theorem. 
 
 Theorem 2.1. If the fractional electrical circuit contains at least one mesh consisting 
of branches with only ideal capacitors and voltage sources, then its matrix E is singular. 
 Proof. Note that the row of E corresponding to the mesh is a zero row. This follows from 
the fact that the equation written with the use of Kirchhoff’s voltage law is an algebraic one. 
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 Example 2.2. Consider the fractional electrical circuit shown on Figure 2.2 with given 
resistances R1, R2, R3 inductances L1, L2, L3 and source voltages e1 and e2. 
 

 

Fig. 2.2. Electrical circuit of Example 2.2 

 
 Using Kirchhoff’s laws we can write the equations 
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 Equations (2.8) can be written in the form 
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 In this case we have 
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 Note that the matrix E is singular but the pencil 
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is regular. Therefore, the fractional electrical circuit is a descriptor linear system with regular 
pencil. 
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 Theorem 2.2. If the fractional electrical circuit contains at least one node with branches 
with coils then its matrix E is singular. 
 Proof. Note that the equation written using the current Kirchhoff’s current law for this 
node is an algebraic one and in the matrix E we have zero row.  
In general case we have the following theorem. 

 Theorem 2.3. Every fractional electrical circuit is a descriptor system if it contains at least 
one mesh consisting of branches with only ideal capacitances and voltage sources or at least 
one node with branches with coils. 
 Proof. By Theorem 2.1 the matrix E of the system is singular if the electrical circuit 
contains at least one mesh consisting of branches with only ideal capacitors and voltage 
sources. Similarly, by Theorem 2.2 the matrix E is singular if the electrical circuit contains at 
least one node with branches with coils. 
 
 

3. Zeroing of the state vector 
 
 Consider the fractional descriptor linear circuit described by the Equation (2.2) with re-
gular pencil satisfying (2.3). To the electrical circuit the state-feedback 

  u = Kx, 0 UnHm (gain matrix) (3.1) 

is applied and the equation of closed-loop circuit has the form 

  ( ) .
d
d xBKA

t
xE +=α

α

 (3.2) 

 We are looking for a gain matrix K such that state vector x = x(t) of the closed-loop circuit 
satisfies the condition 

  x(t) = 0 for t > 0 (3.3) 

for any admissible initial conditions and any values of resistances, inductances and capaci-
tances. 
 It will be shown that there exists a gain matrix K such that the condition (3.3) is satisfied if 
and only if 

  nBE =],[rank , nBAEs =− ],[rank α  for all s 0 C (the field of complex numbers). (3.4) 

 Remark 3.1. The condition (3.4) is satisfied if and only if the matrix ],[ BAEs −  can be 
reduced to the matrix [0   In] by the use of elementary column operations [9]. 

 Theorem 3.1. There exists K 0 UmHn  satisfying the condition 

  ( )[ ] 0det ≠=+− aBKAEsα   (a – a real number independent of s), (3.5) 

if and only if the condition (3.4) is met. 
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 Proof is similar to the proof given in [6]. The solution of the problem is based on the 
following theorem. 

 Theorem 3.2. There exists a gain matrix K 0 UmH n  such that (3.3) holds if and only if the 
condition (3.4) is satisfied. 
 Proof. By Theorem 3.1 there exists K satisfying (3.5) if and only if the condition (3.4) is 
met. In this case, using the Laplace transform from (3.2) we obtain 
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is the Laplace transform of x(t) and x0 is the admissible initial condition. 
 Taking into account (3.5) we obtain 
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where ( )[ ]BKAEs +−αAdj  denotes the adjoint matrix and Pk 0 UnH n  for k = 0, 1, ..., q. 
 Applying the inverse Laplace transform to (3.7) we obtain 
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since ( ) αα δ stDC =+ ][ 0L , where *(t) is the Dirac impulse and *(k)(t) is k-th derivative and α
+0DC  

denotes the fractional derivative [34]. 

 Example 3.1. Consider the fractional electrical circuit shown in Figure 3.1 with given re-
sistance R, capacitances C1, C2 and source voltage e = e(t). 
 
 

   Fig. 3.1. Electrical circuit of Example 3.1 
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 Using Kirchhoff's laws for the electrical circuit we can write the equations 
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which can be rewritten in the form 
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 The condition (3.4) is satisfied since 
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 For the gain matrix K = [k1   k2] the closed-loop system matrix has the form 

  ( )[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−−=+−
21

21

11

1

kk
R

CsCsBKAEs
αα

α  (3.12) 

and its determinant is equal to a real number a … 0 
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 Therefore, for the state feedback matrix K = [k1 ... k2] with k1 and k2 defined by (3.14) 
we have u1(t) = 0, u2(t) = 0 for t > 0. 

 Example 3.2. Consider the fractional electrical circuit shown in Figure 3.2 with given 
resistances R1, R2, inductances L1, L2 and source current is(t) = is. 
 Using Kirchhoff's laws for the electrical circuit we can write the equations 
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Fig. 3.2. Electrical circuit of Example 3.2 

 
 
which can be rewritten in the form 
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 The condition (3.4) is satisfied since 
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For the gain matrix K = [k1   k2] the closed-loop system matrix has the form 
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and its determinant is equal to a real number a … 0 
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for k1, k2 satisfying the equation 
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 The solution of (3.20) has the form 
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 Therefore, for the state feedback K = [k1   k2] with k1 and k2 given by (3.21) we have i1(t) = 0, 
i2(t) = 0 for t > 0. 

 Example 3.3. Consider the fractional electrical circuit shown in Figure 3.3 with given 
resistances R, R1, R2; inductances L1, L2; capacitances C1, C2; source voltage e = e(t) and 
source current is = is(t). 
 

Fig. 3.3. Electrical circuit of Example 3.3 

 
 
 
 Using Kirchhoff's laws for the electrical circuit we can write the equations 

  

,

,
d
d

d
d

,

,
d

d
d
d

21

2
222

1
1211

21

1
22

2
1

1

iii

t
iLiR

t
iLuiR

euu

i
R
u

t
uC

t
uC

s +=

+=++

=+

−=−

β

β

β

β

α

α

α

α

 (3.22) 

which can be written in the form 
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where 

  .

10
00
01
00

,

1100
10

0011

0110

,

0000
00

0000
00

21
21

21

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

= B
RR

R
A

LL

CC

E  (3.23b) 

 The condition (3.4) is satisfied since 

  [ ] 4

1
0
0
0

0
0
1
0

0000
00

0000
00

rank,rank
21

21

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=
LL

CC

BE  

and 

 ( ) .

11
10

11

011

0
0rank

24232221

2211

14131211

21

2

2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−+

−−−−

−−

=⎥
⎦

⎤
⎢
⎣

⎡
+−⎥

⎦

⎤
⎢
⎣

⎡

kkkk
RLsRLs

kkkk
R

CsCs

BKA
sI

sIE
ββ

αα

β

α

 (3.24) 

for all s 0 C. 
 For the gain matrix 
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the closed-loop system matrix has the form 
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 Assuming k13 = k14 = k21 = k22 = 0, we obtain the determinant of the matrix (3.26) 
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where 
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From (3.28) we have k11 = 1 – a1 R and 
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The Equation (3.29) has the solution 
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if 
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 Therefore, for the gain matrix (3.25) with k13 = k14 = k21 = k22 = 0, k11 = 1 – a1R, and k12, 
k23, k24, given by (3.30) we have u1(t) = 0, u2(t) = 0, i1(t) = 0, i2(t) = 0 for t > 0. 

 Remark 3.2. For the fractional electrical circuit shown in Figure 2.1 the condition (3.4) is 
not satisfied since 
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10110
00
01101

rank ],[rank 321

1

=
⎥
⎥
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⎤

⎢
⎢
⎢

⎣

⎡
−

+
=− CsCsCs

RCs
BAEs ααα

α

α   for all s 0 C. (3.32) 

 Remark 3.3. The method based on transformation of the matrix Esα – A to upper Hes-
senberg form can be also applied to solving the problem [22]. 
 
 

4. Concluding remarks 
 
 The problem of zeroing of the state variables in descriptor electrical circuits by suitable 
choice of state feedbacks has been formulated and solved. It has been shown that there exists 
a gain matrix such that (3.3) holds if and only if the condition (3.4) is satisfied. The choice of 
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the gain matrix of state feedbacks has been demonstrated in three examples of descriptor 
electrical circuits. These considerations can be extended to discrete-time linear systems. 
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